Communications in Mathematical Physics

, Volume 84, Issue 4, pp 471–481 | Cite as

General solutions of nonlinear equations in the geometric theory of the relativistic string

  • B. M. Barbashov
  • V. V. Nesterenko
  • A. M. Chervyakov


General solutions for the system of nonlinear equations in the second order partial derivatives with two independent variables are obtained. They determine the basic differential forms of the two-dimensional minimal surface embedded inton-dimensional pseudo-Euclidean space.


Neural Network Statistical Physic Complex System General Solution Partial Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackiw, R.: Rev. Mod. Phys.49, 681 (1977)Google Scholar
  2. 2.
    Nambu, Y.: Phys. Rev.D10, 4262–4268 (1974); Phys. Rep.23C, 250–253 (1976)Google Scholar
  3. 3.
    Faddeev, L. D., Korepin, V. E.: Phys. Rep.42C, 1–87 (1978)Google Scholar
  4. 4.
    Barbashov, B. M., Nesterenko, V. V.: Phys. Elem. Part. Atom. Nucl. (in Russian)9, 709–758 (1978)Google Scholar
  5. 5.
    Ablowitz, M. J., Kaup, D. J., Newell, A. C., Segur, H.: Phys. Rev. Lett.30, 1262–1264; Stud. Appl. Math.53, 249 (1974)Google Scholar
  6. 6.
    Sasaki, R.: Nucl. Phys.B154, 343–357 (1979)Google Scholar
  7. 7.
    Lund, F.: Phys. Rev.D15, 1540 (1977)Google Scholar
  8. 8.
    Barbashov, B. M., Nesterenko, V. V.: Fortschr. Phys.28, 427–464 (1980)Google Scholar
  9. 9.
    Barbashov, B. M., Nesterenko, V. V., Chervyakov, A. M.: J. Phys.A13, 301–312 (1980)Google Scholar
  10. 10.
    Nesterenko, V. V.: Lett. Math. Phys.4, 451–456 (1980)Google Scholar
  11. 11.
    Barbashov, B. M., Nesterenko, V. V.: Commun. Math. Phys.78, 499–506 (1981)Google Scholar
  12. 12.
    Wilson, K. G.: Phys. Rev.D10, 2445–2459 (1974)Google Scholar
  13. 13.
    Favard, J.: Cours de geometrie differentialle locale. Paris: Gauthier-Villars 1957Google Scholar
  14. 14.
    Barbashov, B. M., Koshkarov, A. L.: Teor. Mat. Fiz.39, 27–34 (1979)Google Scholar
  15. 15.
    Eisenhart, L. P.: Riemannian Geometry. Princeton: Princeton University Press 1964Google Scholar
  16. 16.
    Osserman, R.: Bull. Am. Math. Soc.75, 1092–1120 (1969)Google Scholar
  17. 17.
    Omnes, R.: Nucl. Phys.B149, 269–284 (1979)Google Scholar
  18. 18.
    Bianchi, L.: Lezioni di Geometria Differenziale, 4th ed. Bologna 1922–1923Google Scholar
  19. 19.
    Forsyth, A. R.: Theory of Differential Equations, v. 5–6. New York: Dover Publications 1959Google Scholar
  20. 20.
    Lund, F.: Ann. Phys.115, 251–268 (1978)Google Scholar
  21. 21.
    Handbook of Mathematical Functions. Edited by Abramowitz, M. and Stegun, I. A. National Bureau of Standards Applied Mathematics Series55, 1964Google Scholar
  22. 22.
    Leznov, A. N., Saveliev, M. V.: Phys. Elem. Part. Atom. Nucl. (in Russian)11, 40–91 (1980);12, 125–161 (1981)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • B. M. Barbashov
    • 1
  • V. V. Nesterenko
    • 1
  • A. M. Chervyakov
    • 1
  1. 1.Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaUSSR

Personalised recommendations