Communications in Mathematical Physics

, Volume 88, Issue 2, pp 151–184

Absence of diffusion in the Anderson tight binding model for large disorder or low energy

  • Jürg Fröhlich
  • Thomas Spencer
Article

Abstract

We prove that the Green's function of the Anderson tight binding Hamiltonian decays exponentially fast at long distances on ℤv, with probability 1. We must assume that either the disorder is large or the energy is sufficiently low. Our proof is based on perturbation theory about an infinite sequence of block Hamiltonians and is related to KAM methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, P.: Absence of diffusion in certain random lattices. Phys. Rev.109, 1492 (1958)Google Scholar
  2. 2.
    Goldsheid, I., Molchanov, S., Pastur, L.: Pure point spectrum of stochastic one-dimensional Schrödinger operators. Funct. Anal. App.11, 1 (1977)Google Scholar
  3. 3.
    Kunz, H., Souillard, B.: Sur le spectre des opérateurs aux différences finies aléatoires. Commun. Math. Phys.78, 201–246 (1980)Google Scholar
  4. 4.
    Carmona, R.: Exponential localization in one-dimensional disordered systems. Duke Math. J.49, 191 (1982)Google Scholar
  5. 5.
    Delyon, F., Kunz, H., Souillard, B.: One dimensional wave equation in disordered media. Preprint 1982, Ecole PolytechniqueGoogle Scholar
  6. 6.
    Kunz, H., Souillard, B.: To appearGoogle Scholar
  7. 7.
    Fröhlich, J., Spencer, T.: The phase transition in the one-dimensional Ising model with 1/r 2 interaction energy. Commun. Math. Phys.84, 87 (1982)Google Scholar
  8. 8.
    Fröhlich, J., Spencer, T.: The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys.81, 527 (1981); Kosterlitz-Thouless transition in two-dimensional plane rotator and Coulomb gas. Phys. Rev. Lett.46, 1006 (1981)Google Scholar
  9. 9.
    Constantinescu, F., Fröhlich, J., Spencer, T.: To appearGoogle Scholar
  10. 10.
    Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B44, 9–15 (1981)Google Scholar
  11. 11.
    McKane, A., Stone, M.: Localization as an alternative to Goldstone's theorem. Ann. Phys.131, 36 (1981)Google Scholar
  12. 12.
    Ruelle, D.: A remark on bound states in potential-scattering theory. Nuovo Cimento A61, 655 (1969)Google Scholar
  13. 13.
    Simon, B.: Correlation inequalities and the decay of correlations in ferromagnets. Commun. Math. Phys.77, 111 (1980)Google Scholar
  14. 14.
    Edwards, S., Thouless, D.: Regularity of the density of states in Anderson's localized electron model. J. Phys. C4, 453 (1971)Google Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of modern mathematical physics. IV. New York: Academic Press 1978Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  • Thomas Spencer
    • 2
  1. 1.Theoretical PhysicsETH. HönggerbergZürichSwitzerland
  2. 2.Department of MathematicsCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Courant InstituteNew YorkUSA

Personalised recommendations