Communications in Mathematical Physics

, Volume 94, Issue 2, pp 177–217 | Cite as

Classical and quantum mechanical systems of Toda-lattice type

II. Solutions of the classical flows
  • Roe Goodman
  • Nolan R. Wallach


Solutions to the classical periodic and non-periodic Toda lattice type Hamiltonian systems are expressed in terms of an Iwasawa-type factorization of a “large” Lie group. The scattering of these systems is determined in the non-periodic case. For the generalized periodic Toda lattices a generalization of Kostant's formula is obtained using standard representations of affine Lie groups.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Mechanical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-M]
    Abraham, R., Marsden, J.E.: Foundations of mechanics (2nd edn.). Reading, MA: Benjamin/Cummings 1978Google Scholar
  2. [Ad]
    Adler, M.: On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg-deVries equation. Invent. Math.50, 219–248 (1979)Google Scholar
  3. [A-vM]
    Adler, M., van Moerbeke, P.: Completely integrable systems, Euclidean Lie algebras, and curves. Adv. Math.38, 267–317 (1980)Google Scholar
  4. [Be]
    Bernat, P. et al.: Représentations des groupes de Lie résolubles. Paris: Dunod 1972Google Scholar
  5. [Bo1]
    Bourbaki, N.: Groupes et algébres de Lie. Chaps. II–III (Éléments de mathématique, Fasc. XXXVII). Paris: Hermann 1972Google Scholar
  6. [Bo2]
    Bourbaki, N.: Groupes et algébres de Lie, Chaps. IV–VI (Éléments de mathématique, Fasc. XXXIV). Paris: Hermann 1968Google Scholar
  7. [G-W1]
    Goodman, R., Wallach, N.R.: Whittaker vectors and conical vectors. J. Funct. Anal.39, 199–279 (1980)Google Scholar
  8. [G-W2]
    Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. I. Commun. Math. Phys.83, 355–386 (1982)Google Scholar
  9. [G-W3]
    Goodman, R., Wallach, N.R.: Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math.347, 69–133 (1984)Google Scholar
  10. [G-S]
    Guillemin, V., Sternberg, S.: On the method of Symes for integrating systems of Toda type. Lett. Math. Phys. (to appear)Google Scholar
  11. [Ha]
    Hancock, H.: Theory of elliptic functions. New York: Dover 1958Google Scholar
  12. [He1]
    Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962Google Scholar
  13. [He2]
    Helgason, H.: Differential geometry, Lie groups, and symmetric spaces. New York: Academic Press 1978Google Scholar
  14. [Jo]
    Joseph, A.: The minimal orbit in a simple Lie algebra and its associated maximal ideal. Ann. Sci. École Norm. Sup. (4)9, 1–29 (1976)Google Scholar
  15. [Ko]
    Kostant, B.: The Solution to a generalized Toda lattice and representation theory. Adv. Math.34, 195–338 (1979)Google Scholar
  16. [Mo]
    Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math.16, 197–220 (1975)Google Scholar
  17. [O-P]
    Olshanetsky, M.A., Perelomov, A.M.: Explicit solutions of classical generalized Toda models. Invent. Math.54, 261–269 (1979)Google Scholar
  18. [Ra]
    Ratiu, T.: Involution theorems. In: Geometric methods in mathematical physics. Lecture Notes in Mathematics, Vol. 775. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  19. [R-S1]
    Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. Invent. Math.54, 81–100 (1979)Google Scholar
  20. [R-S2]
    Reyman, A.G., Semenov-Tian-Shansky, M.A.: Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. II. Invent. Math.63, 423–432 (1981)Google Scholar
  21. [Ru]
    Rutishauser, H.: Vorlesungen über numerische Mathematik (Bd. 2). Basel: Birkhäuser 1976Google Scholar
  22. [S-T-S]
    Semenov-Tian-Shansky, M.A.: Group-theoretical aspects of completely integrable systems. In: Twistor geometry and non-linear systems. Lecture Notes in Mathematics, Vol. 970. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  23. [Sy1]
    Symes, W.W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math.59, 13–51 (1980)Google Scholar
  24. [Sy2]
    Symes, W.W.: Hamiltonian group actions and integrable systems. Physica D1, 339–374 (1980)Google Scholar
  25. [Wal]
    Wallach, N.R.: Harmonic analysis on homogeneous spaces. New York: Dekker 1973Google Scholar
  26. [War]
    Warner, G.: Harmonic analysis on semi-simple Lie groups. I. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  27. [W-W]
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1927Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Roe Goodman
    • 1
  • Nolan R. Wallach
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations