Advertisement

Journal of Materials Science

, Volume 30, Issue 12, pp 3061–3074 | Cite as

An improvement in processing of hydroxyapatite ceramics

  • M. G. S. Murray
  • J. Wang
  • C. B. Ponton
  • P. M. Marquis
Papers

Abstract

Hydroxyapatite ceramics have been fabricated via two different processing routes, a conventional processing route and an emulsion-refined route. The conventional precipitation processing of powder precursors for hydroxyapatite ceramics results in the formation of hard particle agglomerates, which degrade both the compaction and densification behaviour of the resultant powder compacts. An emulsion-refinement step has been shown to be effective in “softening” particle agglomerates present in the conventionally processed powder precursor. As a result, the emulsion-refined powder compact exhibits both a higher green density and a higher sintered density than the un-refined powder compact, on sintering at temperatures above 800 °C. The effect of powder agglomeration on densification during both the initial and later stage of sintering is discussed. The attainable sintered density of the conventionally processed material was found to be limited by the presence of hard powder agglomerates, which were not effectively eliminated by the application of a pressing pressure of 200 MPa. These hard powder agglomerates, which form highly densified regions in the sintered ceramic body, commenced densification at around 400 °C which is more than 100 °C lower than the densification onset temperature for the emulsion-refined powder compact, when heated at a rate of 5 °C min−1. The inter-agglomerate voids, manifested by the differential sintering, resulted in the formation of large, crack-like pores, which act as the strength-limiting microstructural defects in the conventionally processed hydroxyapatite. A fracture strength of 170±12.3 MPa was measured for the emulsion-refined material compared to 70±15.4 MPa for the conventionally processed material, when both were sintered at 1100 °C for 2 h.

Keywords

Powder Compact Fracture Strength Processing Route Particle Agglomerate Powder Precursor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Hench,J. Am. Ceram. Soc. 74 (1991) 1487.Google Scholar
  2. 2.
    M. Jarcho, C. H. Bolen, M. B. Thomas, J. Bobick, J. K. Kay andR. H. Doremus,J. Mater. Sci. 11 (1976) 2027.Google Scholar
  3. 3.
    A. Quinton, R. Nass andH. Schmidt, private communication (1994).Google Scholar
  4. 4.
    T. Hattori andY. Iwadate,J. Am. Ceram. Soc. 73 (1990) 1803.Google Scholar
  5. 5.
    F. F. Lange,ibid. 72 (1989) 3.Google Scholar
  6. 6.
    J. Zheng andJ. S. Reed,Am. Ceram. Soc. Bull. 71 (1992) 1410.Google Scholar
  7. 7.
    B. Kellett andF. F. Lange,J. Am. Ceram. Soc. 67 (1984) 369.Google Scholar
  8. 8.
    S. K. Ellis andE. P. McNamara,Am. Ceram. Soc. Bull. 68 (1989) 988.Google Scholar
  9. 9.
    R. Roy,J. Am. Ceram. Soc. 52 (1969) 344.Google Scholar
  10. 10.
    A. B. Hardy, W. E. Rhine, G. Gowda, T. J. McMohan, R. E. Riman andH. K. Bowen, in “Ultrastructure Processing of Advanced Ceramics”, edited by J. D. Mackenzie and D. R. Ulrich (Wiley, New York, 1988) p. 407.Google Scholar
  11. 11.
    B. H. Robinson,Chem. Britain (April) (1990) 342.Google Scholar
  12. 12.
    P. Reyen, H. Bastius andM. Fielder, in “Ceramic Powders”, edited by P. Vincenzine (Elsevier, Amsterdam, 1983) p. 499.Google Scholar
  13. 13.
    A. Celikkaya andM. Akinc, in “Ceramic Transactions”, Vol. 1A, “Ceramic Powder Science II”, edited by G. L. Messing, E. R. Fuller and H. Hausner (American Ceramic Society, Westerville, OH, 1988) pp. 110–17.Google Scholar
  14. 14.
    T. Kanai, W. E. Rhine andH. K. Bowen,ibid.“ pp. 119–27.Google Scholar
  15. 15.
    S. D. Ramamurthi, Z. Xu andD. A. Payne,J. Am. Ceram. Soc. 73 (1990) 2760.Google Scholar
  16. 16.
    G. H. Mäher, C. E. Hutchins andS. D. Ross,Ceram. Bull. 72 (1993) 72.Google Scholar
  17. 17.
    S. E. Friberg,Prog. Colloid. Polym. Sci. 68 (1983) 41.Google Scholar
  18. 18.
    M. Akao, H. Aoki andK. Kato,J. Mater. Sci. 16 (1981) 809.Google Scholar
  19. 19.
    S. Timoshenko andS. Wainwsky-kreigers, “Theory of Plates and Shells” (McGraw-Hill, New York 1959) p. 71.Google Scholar
  20. 20.
    J. S. Reed, “Introduction to Principles of Ceramic Processing” (Wiley, New York, 1989).Google Scholar
  21. 21.
    F. F. Y. Wang (ed.), “Ceramic Fabrication Processes”, Treatise on Materials Science and Technology, Vol. 9 (Academic Press, London, 1976).Google Scholar
  22. 22.
    G.Y. Onoda andL.L. Hench (eds), “Ceramic Processing Before Firing” (Wiley, New York, 1978).Google Scholar
  23. 23.
    G. C. Kuczynski,Trans. AIME 185 (1949) 169.Google Scholar
  24. 24.
    W. D. Kingery, H. K. Bowen andD. R. Uhlmann, “Introduction to Ceramics” (Wiley, New York, 1976).Google Scholar
  25. 25.
    E. B. Slamovich andF. F. Lange,J. Am. Ceram. Soc. 73 (1990) 3368.Google Scholar
  26. 26.
    J. Wang, C. B. Ponton andP. M. Marquis,ibid. 75 (1992) 3457.Google Scholar
  27. 27.
    A. G. Evans,ibid. 65 (1982) 127.Google Scholar
  28. 28.
    E. B. Slamovich andF. F. Lange,ibid. 75 (1992) 2498.Google Scholar
  29. 29.
    W. D. Kingery andB. Francois, in “Sintering and Related Phenomena”, edited by G. C. Kuczynski, N. A. Hooton and G. F. Gibbon (Gordon and Breach, New York, 1967) pp. 471–96.Google Scholar
  30. 30.
    F. F. Lange andB. I. Davis, in “Advances in Ceramics”, Vol. 12, edited by N. Claussen, M. Ruble and A. H. Heuer (American Ceramic Society, Columbus, OH, 1984) pp. 699–713.Google Scholar
  31. 31.
    F. F. Lange,J. Am. Ceram. Soc. 67 (1984) 83.Google Scholar
  32. 32.
    W. H. Rhodes,ibid. 64 (1981) 19–22.Google Scholar
  33. 33.
    A. G. Evans,ibid. 65 (1982) 497.Google Scholar
  34. 34.
    G. Petzow andH. E. Exner,Z. Metallkde 67 (1976) 611.Google Scholar

Copyright information

© Chapman & Hall 1995

Authors and Affiliations

  • M. G. S. Murray
    • 1
  • J. Wang
    • 2
  • C. B. Ponton
    • 1
  • P. M. Marquis
    • 1
    • 3
  1. 1.School of Metallurgy and MaterialsThe University of BirminghamEdgbastonUK
  2. 2.IRC in Materials for High Performance ApplicationsThe University of BirminghamEdgbastonUK
  3. 3.Biomaterials, School of DentistryThe University of BirminghamEdgbastonUK

Personalised recommendations