Advertisement

Mathematical Notes

, Volume 54, Issue 6, pp 1246–1260 | Cite as

On “balayage inwards” of charges in ℝ n

  • B. Yu. Sternin
  • V. E. Shatalov
Article
  • 33 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Khavinson and H.S. Shapiro,The Schwarz Potential inn and Cauchy Problem for the Laplace Equation, The Royal Inst. of Technology, Stockholm, 1989.Google Scholar
  2. 2.
    H.S. Shapiro,The Schwarz Function and its Generalization to Higher Dimensions, The Royal Inst. of Technology, Stockholm, 1989.Google Scholar
  3. 3.
    H.S. Shapiro,Global Geometric Aspects of Cauchy's Problem for the Laplace Operator, The Royal Inst. of Technology, Stockholm, 1989.Google Scholar
  4. 4.
    B.Yu. Sternin and V.E. Shatalov,Continuation solutions to elliptic equations and localization of singularities, Lect. Notes in Math.1520 (1992), 237–260.Google Scholar
  5. 5.
    B.Yu. Sternin and V.E. Shatalov,Differential equations on complex analytic manifolds and the Maslov canonical operator, Uspekhi Mat. Nauk.43 (1988), No. 3, 99–124.Google Scholar
  6. 6.
    B.Yu.Sternin and V.E.Shatalov,An integral transform of complex analytic functions, Doklady Akad. Nauk SSSR280 (1985), no. 3.Google Scholar
  7. 7.
    B.Yu. Sternin and V.E. Shatalov,The Laplace-Radon integral transform and its applications to non-homogeneous Cauchy's problem in complex space, Differentsial'nye Uravneniya24 (1988), no. 1.Google Scholar
  8. 8.
    B.Yu. Sternin and V.E. Shatalov,Singularities of differential equations on complex manifolds and the problem of “balayage inwards,” Geometry and analysis, Kemerovo, 1991, pp. 22–30.Google Scholar
  9. 9.
    B.Yu. Sternin and V.E. Shatalov,The problem of continuation of solutions of elliptic equations, Differentsial'nye Uravneniya28 (1992), no. 1, 152–162.Google Scholar
  10. 10.
    T.V. Savina, B.Yu. Sternin, and V.E. Shatalov,The law of reflection for the Helmholtz equation, Doklady Akad. Nauk SSSR322 (1992), no. 1, 48–51.Google Scholar
  11. 11.
    T.V.Savina, B.Yu.Sternin, and V.E.Shatalov,Reflection formula for the Helmholtz equation, Radiotekhnika i Élektronika38 (1993), no. 2.Google Scholar
  12. 12.
    A.G. Kyurkchan, B.Yu. Sternin, and V.E. Shatalov,Singularities of continued solutions of the Maxwell equations, Radiotekhnika i Élektronika37 (1992), no. 5, 777–796.Google Scholar
  13. 13.
    A.G.Kyurkchan, B.Yu.Sternin, and V.E.Shatalov,The problem of continuation and localization of singularities for solutions of the Maxwell equations, Proceedings of the School on Spreading of Radiowaves, 1993.Google Scholar
  14. 14.
    P. Davis,The Schwarz Function and its Applications. Carus Math. Monographs 17, Math. Assoc. of America, 1979.Google Scholar
  15. 15.
    G. Johnsson,Global Existence Results for Linear Analytic Partial Differential Equations, The Royal Inst. of Technology, Stockholm, 1989.Google Scholar
  16. 16.
    G. Johnsson,Global Existence Results for Certain Linear Holomorphic Cauchy Problem, The Royal Inst. of Technology, Stockholm, 1992.Google Scholar
  17. 17.
    J. Leray,Le calcul différentiel et intégral sur une variété analytique complexe (Problem de Cauchy, III), Bull. Soc. Math. France87 (1959), no. 2, 81–180.Google Scholar
  18. 18.
    F. Pham,Introduction á l'étude topologique des singularités de Landau, Gautier-Villars, Paris, 1967.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 1
  1. 1.Lomonosov Moscow State UniversityUSSR

Personalised recommendations