Advertisement

Communications in Mathematical Physics

, Volume 91, Issue 3, pp 381–403 | Cite as

On the initial value problem of the second Painlevé Transcendent

  • A. S. Fokas
  • M. J. Ablowitz
Article

Abstract

The initial value problem associated with the second Painlevé Transcendent is linearized via a matrix, discontinuous, homogeneous Riemann-Hilbert (RH) problem defined on a complicated contour (six rays intersecting at the origin). This problem is mapped through a series of transformations to three different simple Riemann-Hilbert problems, each of which can be solved via a system of two Fredholm integral equations. The connection of these results with the inverse scattering transform in one and two dimensions is also pointed out.

Keywords

Neural Network Statistical Physic Integral Equation Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Painlevé, P.: Bull. Soc. Math. Fr.28, 214 (1900)Google Scholar
  2. 1a.
    Painlevé, P.: Acta Math.25, 1 (1902)Google Scholar
  3. 2.
    Gambier, B.: Acta Math.33, 1 (1909)Google Scholar
  4. 3.
    Ince, E.L.: Ordinary differential equations (1927). New York: Dover 1956Google Scholar
  5. 4.
    The work done in Soviet Union up to 1976 is reviewed by the editor of Diff. Urav. in the following two review articles (where he quotes 127 references):Google Scholar
  6. 4. 1)
    Erugin, N.P.: Diff. Urav.12, 387 (1976)Google Scholar
  7. 4. 2)
    Erugin, N.P.: Diff. Urav.12, 579 (1976)Google Scholar
  8. 5.
    Gromak, V.I.: Diff. Urav.14, 2131 (1978)Google Scholar
  9. 6.
    LUkashevich, N.A.: Diff. Urav.7, 1124 (1971)Google Scholar
  10. 7.
    Gromak, V.I.: Diff. Urav.11, 373 (1975)Google Scholar
  11. 8.
    Lukashevich, N.A.: Author's abstract of doctoral dissertation (in Russian) (Kiev, 1971)Google Scholar
  12. 9.
    Gromak, V.I.: Diff. Urav.12, 740 (1976)Google Scholar
  13. 10.
    Fokas, A.S., Yortsos, Y.C.: The transformation properties of the sixth Painlevé equation and one-parameter families of solutions. Lett. Nuovo Cimento30, 539–540 (1980)Google Scholar
  14. 11.
    Barouch, E., McCoy, B.M., Wu, T.T.: Zero-field susceptibility of the two-dimensional Ising model nearT c. Phys. Rev. Lett.31, 1409 (1973)Google Scholar
  15. 11a.
    Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Spin-spin correlation functions for the two-dimensional Ising model-exact theory in the scaling region. Phys. Rev. B13, 316 (1976)Google Scholar
  16. 12.
    Jimbo, M., Miwa, T., Mori, Y., Sato, M.: Physica1 D, 80 (1980)Google Scholar
  17. 12a.
    Jimbo, M., Miwa, T.: Proc. Jpn. Acad.56 A, 405 (1980)Google Scholar
  18. 13.
    Miles, J.W.: Proc. R. Soc. London A361, 277 (1978)Google Scholar
  19. 14.
    McCoy, B.M., Perk, J.H.H., Schrock, R.: Nucl. Phys. B (1983) and Correlation functions of the transverse Ising chain at the critical field for large temporal and spatial separationsGoogle Scholar
  20. 15. 1)
    Ablowitz, M.J., Segur, H.: Exact linearization of a Painlevé transcendent. Phys. Rev. Lett.38, 1103 (1977)Google Scholar
  21. 15. 2)
    Ablowitz, M.J., Ramani, A., Segur, H.: Nonlinear evolution equations and ordinary differential equations of Painlevé type. Lett. Nuovo Cimento23, 333 (1978)Google Scholar
  22. 15. 3)
    Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations ofP-type. I. J. Math. Phys.21, 715 (1980)Google Scholar
  23. 15. 4)
    Ablowitz, M.J., Ramani, A., Segur, H.: A connection between nonlinear evolution equations and ordinary differential equations ofP-type. II. J. Math. Phys.21, 1006 (1980)Google Scholar
  24. 16.
    Ablowitz, M.J., Segur, H.: Solitons and the inverse scattering transform. SIAM Stud. Appl. Math. (Studies 4) 1981Google Scholar
  25. 17.
    Fokas, A.S., Ablowitz, M.J.: On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys.23, 2033 (1982)Google Scholar
  26. 18.
    Sato, M., Miwa, T., Jimbo, M.: Publ. RIMS, Kyoto Univ.15, 201 (1979); Proc. Jpn. Acad.55 A, 267 (1979); In: Lecture Notes in Physics, Vol. 126. Berlin, Heidelberg, New York: Springer 1980, p. 429Google Scholar
  27. 19.
    Ueno, K.: Master's thesis, Kyoto Univ. (1979). Proc. Jpn. Acad.56 A, 97 (1980);56 A, 103 (1980)Google Scholar
  28. 20.
    Flaschka, H., Newell, A.C.: Monodromy and spectrum preserving deformations. I. Commun. Math. Phys.76, 67 (1980)Google Scholar
  29. 21.
    Jimbo, M., Miwa, T., Ueno, K.: Physica2 D, 306 (1981)Google Scholar
  30. 21. a)
    Jimbo, M., Miwa, T.: Physica2 D, 407 (1981);4 D, 47 (1981)Google Scholar
  31. 22.
    Fokas, A.S., Ablowitz, M.J.: Linearization of the Korteweg-deVries and Painlevé. II. Equations. Phys. Rev. Lett.47, 1096 (1981)Google Scholar
  32. 23.
    Whitham, G.B.: Private communicationGoogle Scholar
  33. 24.
    Fokas, A.S., Ablowitz, M.J.: On the inverse scattering transform for the Kadomtsev-Petviashvili equation. Phys. Lett.94 A, 67 (1983)Google Scholar
  34. 25.
    Ablowitz, M.J., Bar Yaacov, D., Fokas, A.S.: On the inverse scattering transform for the Kadomtsev-Petviashvili equation. Stud. Appl. Math. (to appear)Google Scholar
  35. 26.
    Fokas, A.S.: On the inverse scattering of first order systems in the plane related to nonlinear multidimensional equations. Phys. Rev. Lett.51, 3–6 (1983)Google Scholar
  36. 26a.
    Fokas, A.S., Ablowitz, M.J.: On the inverse scattering transform of multi-dimensional nonlinear equations related to first order systems in the plane. INS No. 24, January 1983Google Scholar
  37. 27. i)
    Gakhov, F.D.: Boundary value problems. New York: Pergamon Press 1966Google Scholar
  38. 27. ii)
    Muskhelishvili, N.I.: Singular integral equations. Groningen: Noordhoff 1953Google Scholar
  39. 27. iii)
    Vekua, N.P.: Systems of singular integral equations. New York: Gordon and Breach 1967Google Scholar
  40. 28.
    Krein, M.G.: Usp. Mat. Nauk.13, 3 (1958)Google Scholar
  41. 28a.
    Gohberg, I., Krein, M.G.: Usp. Mat. Nauk.13, 2 (1958)Google Scholar
  42. 28b.
    Prossdorf, S.: Some classes of singular equations. Amsterdam: North-Holland 1978Google Scholar
  43. 29.
    Riemann, B.: Gesammelte Mathematische Werke. Leipzig (1892)Google Scholar
  44. 30.
    Hilbert, D.: Grundzüge der Integralgleichungen. Leipzig (1924)Google Scholar
  45. 31.
    Birkhoff, G.D.: Trans. AMS 436 (1909) and 199 (1910)Google Scholar
  46. 32.
    Plemelj, J.: Problems in the sense of Riemann and Klein. New York: Wiley 1964Google Scholar
  47. 33.
    Erugin, N.P.: Linear systems of ODE's. New York: Academic Press 1966Google Scholar
  48. 34.
    Chudnovsky, D.V.: In: Bifurcation phenomena in mathematical physics and related topics, p. 385. Bardos, C., Bessis, D. (eds.). Dordrecht, Boston: Reidel 1980Google Scholar
  49. 34a.
    Chudnovsky, D.V., Chudnovsky, G.V.: Lett. Math. Phys.4, 373 (1980)Google Scholar
  50. 35.
    Miwa, T.: Proc. Jpn. Acad.56 A, 301 (1980)Google Scholar
  51. 36.
    Beals, R., Coifman, R.R.: Scattering and inverse scattering for first order systems. Preprint, Yale 1982Google Scholar
  52. 37.
    Sanborn, F.: Ph. D. thesis, Clarkson College (1984)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. S. Fokas
    • 1
  • M. J. Ablowitz
    • 1
  1. 1.Department of Mathematics and Computer ScienceClarkson College of TechnologyPotsdamUSA

Personalised recommendations