Advertisement

Communications in Mathematical Physics

, Volume 91, Issue 3, pp 329–380 | Cite as

Lattice Yang-Mills theory at nonzero temperature and the confinement problem

  • Christian Borgs
  • Erhard Seiler
Article

Abstract

We discuss finite temperature lattice Yang-Mills theory with special attention to the confinement problem. The relationship between the confinement criteria of Wilson, Polyakov, and 't Hooft is clarified by establishing a string of inequalities between the corresponding string tensions.

The close connection between finite temperature Yang-Mills models and spin models is exploited to obtain new and rather sharp upper bounds for the critical coupling constant above which there is confinement. This same analogy also allows us to establish infrared bounds for the gauge models that yield a lower bound for this critical coupling and thereby show the existence of a weak coupling regime without confinement at nonzero temperature in three or more space dimensions.

Finally we discuss extension of our results to other forms of the lattice action, the Hamiltonian lattice models of Kogut and Susskind and 't Hooft'sN → ∞ limit.

Keywords

Weak Coupling Space Dimension Close Connection Finite Temperature Lattice Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Angelis, G.F., De Falco, D., Guerra, F.: Phys. Rev. D17, 1624 (1978)Google Scholar
  2. 2.
    Borgs, C.: Freie Quarks bei hoher Temperatur, ein strenger Beweis im Rahmen der Gittereichtheorien. Diplomarbeit, München 1982Google Scholar
  3. 3.
    Borgs, C., Seiler, E.: Nucl. Phys. B215 [FS 7], 125 (1983)Google Scholar
  4. 4.
    Bricmont, J., Fröhlich, J.: Phys. Lett.122 B, 73 (1983)Google Scholar
  5. 5.
    Brydges, D.C., Federbush, P.: Commun. Math. Phys.62, 79 (1978)Google Scholar
  6. 6.
    Brydges, D.C., Federbush, P.: Commun. Math. Phys.73, 197 (1980)Google Scholar
  7. 7.
    Bunk, B., Wolff, U.: Nucl. Phys. B215 [FS 7], 495 (1983)Google Scholar
  8. 8.
    Caracciolo, S., Menotti, P.: Ann. Phys. (N.Y.)122, 74 (1979); Nucl. Phys. B180 [FS 2], 428 (1981)Google Scholar
  9. 9.
    Creutz, M.: Phys. Rev. D21, 2308 (1979)Google Scholar
  10. 10.
    Creutz, M.: Phys. Rev. D15, 1128 (1977)Google Scholar
  11. 11.
    Davies, E.B.: J. London Math. Soc.7, 483 (1973)Google Scholar
  12. 12.
    Dolan, L., Jackiw, R.: Phys. Rev. D9, 3320 (1974)Google Scholar
  13. 13.
    Drouffe, J.M.: Phys. Rev. D18, 1174 (1978)Google Scholar
  14. 14.
    Drühl, K., Wagner, H.: Ann. Phys. (N.Y.)141, 225 (1982)Google Scholar
  15. 15.
    Durhuus, B., Fröhlich, J.: Commun. Math. Phys.75, 103 (1980)Google Scholar
  16. 16.
    Engels, J., Karsch, F., Satz, H., Montvay, I.: Nucl. Phys. B205 [FS 5], 545 (1982)Google Scholar
  17. 17.
    Fredenhagen, K.: Structural aspects of gauge theories in the algebraic framework of quantum field theory. Talk presented at the Colloquium in honour of R. Haag's 60th birthday, Freiburg University preprint 1982Google Scholar
  18. 18.
    Fröhlich, J., Simon, B., Spencer, T.: Commun. Math. Phys.50, 79 (1976)Google Scholar
  19. 19.
    Gawedzki, K.: Phys. Rev. D26, 3593 (1982)Google Scholar
  20. 20.
    Ginibre, J.: Commun. Math. Phys.16, 310 (1970)Google Scholar
  21. 21.
    Grümm, H.: Rep. Math. Phys.14, 211 (1973)Google Scholar
  22. 22.
    Guerra, F., Immirzi, G., Marra, R.: Lett. Nuovo Cimento23, 237 (1978)Google Scholar
  23. 23.
    Guth, A.: Phys. Rev. D23, 347 (1981)Google Scholar
  24. 24.
    Hewitt, E., Ross, K.A.: Abstract harmonic analysis, Vols. I, II. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  25. 25.
    Kadanoff, L.: Ann. Phys.100, 359 (1976)Google Scholar
  26. 26.
    Kogut, J., Susskind, L.: Phys. Rev. D11, 395 (1975)Google Scholar
  27. 27.
    Kuti, J., Polónyi, P., Szlachanyi, K.: Phys. Lett.98 B, 199 (1981)Google Scholar
  28. 28.
    Linde, A.D.: Rep. Prog. Phys.42, 389 (1979)Google Scholar
  29. 29.
    Lüscher, M.: Commun. Math. Phys.54, 283 (1977)Google Scholar
  30. 30.
    Mack, G., Meyer, H.: Nucl. Phys. B200 [FS 4], 249 (1982)Google Scholar
  31. 31.
    McKean, H.P., Jr.: Stochastic integrals. New Yoek: Academic Press 1969Google Scholar
  32. 32.
    McKean, H.P., Singer, I.M.: J. Diff. Geom.1, 43 (1967)Google Scholar
  33. 33.
    McLerran, L.D., Svetitsky, B.: Phys. Lett.98 B, 195 (1981)Google Scholar
  34. 34.
    Migdal, A.A.: Zh. Eksp. Teor. Fiz.69, 810 (1975) [Sov. Phys. JETP42, 413 (1976)]Google Scholar
  35. 35.
    Münster, G.: Nucl. Phys. B180 [FS 2], 23 (1981)Google Scholar
  36. 36.
    Nauenberg, M., Toussaint, D.: Nucl. Phys. B190 [FS 3], 217 (1981)Google Scholar
  37. 37.
    Okubo, S.: J. Math. Phys.18, 2382 (1977)Google Scholar
  38. 38.
    Osterwalder, K., Seiler, E.: Ann. Phys. (N.Y.)110, 440 (1978)Google Scholar
  39. 39.
    Patrascioiu, A., Seiler, E., Stamatescu, I.O.: Phys. Lett.107 B, 364 (1981)Google Scholar
  40. 40.
    Polyakov, A.M.: Phys. Lett72 B, 477 (1978)Google Scholar
  41. 41.
    Polónyi, P., Szlachanyi, K.: Phys. Lett.110 B, 395 (1982)Google Scholar
  42. 42.
    Ray, D.B., Singer, I.M.: Adv. Math.7, 145 (1971)Google Scholar
  43. 43.
    Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I: Functional analysis. New York: Academic Press 1972; Vol. IV: Analysis of operators. New York: Academic Press 1978Google Scholar
  44. 44.
    Seiler, E.: Phys. Rev. D18, 482 (1978)Google Scholar
  45. 45.
    Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical mechanics. In: Lecture Notes in Physics, Vol. 159. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  46. 46.
    Seiler, E.: Mathematical problems in theoretical physics. In: Lecture Notes in Physics, Vol. 80. dell'Antonio, G.F., et al. (eds.). Berlin, Heidelberg, New York: Springer 1978Google Scholar
  47. 47.
    Seiler, E., Simon, B.: Ann. Phys. (N.Y.)97, 470 (1976)Google Scholar
  48. 48.
    Seiler, E., Stamatescu, I.O., Zwanziger, D.: In preparationGoogle Scholar
  49. 49.
    Simon, B.: Trace ideals and their applications. Cambridge: Cambridge University Press 1979Google Scholar
  50. 50.
    Simon, B.: Functional integration and quantum physics. New York: Academic Press 1979Google Scholar
  51. 51.
    Steinhardt, P.J.: Particle physics and the new cosmology. University of Pennsylvania preprint 1982 Albrecht, A., Steinhardt, P.J.: Phys. Rev. Lett.48, 1220 (1982)Google Scholar
  52. 52.
    Susskind, L.: Phys. Rev. D20, 2610 (1979)Google Scholar
  53. 53.
    Svetitsky, B., Yaffe, L.G.: Phys. Rev. D26, 963 (1982); Nucl. Phys. B210 [FS6], 423 (1982)Google Scholar
  54. 54.
    't Hooft, G.: In: Recent developments in gauge theories. 't Hooft, G., et al. (eds.). New York: Plenum Press 1980Google Scholar
  55. 55.
    Tomboulis, E.T.: Phys. Rev. Lett.50, 885 (1983)Google Scholar
  56. 56.
    Varadarajan, V.S.: Lie groups, Lie algebras and their representations. Englewood Cliffs, NJ: Prentice Hall 1974Google Scholar
  57. 57.
    Villain, J.: J. Physique36, 581 (1975)Google Scholar
  58. 58.
    Wallace, A.P.: Algebraic topology, homology and cohomology. New York: Benjamin 1970Google Scholar
  59. 59.
    Wegner, F.: J. Math. Phys.12, 2259 (1971)Google Scholar
  60. 60.
    Weiss, N.: Phys. Rev. D24, 475 (1981); D25, 2667 (1982)Google Scholar
  61. 61.
    Wilson, K.: Phys. Rev. D10, 2445 (1974)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Christian Borgs
    • 1
  • Erhard Seiler
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMünchenFederal Republic of Germany

Personalised recommendations