Communications in Mathematical Physics

, Volume 84, Issue 3, pp 403–438

The rotation number for almost periodic potentials

  • R. Johnson
  • J. Moser
Article

Abstract

We define and analyze the rotation number for the almost periodic Schrödinger operatorL= −d2/dx2+q(x). We use the rotation number to discuss (i) the spectrum ofL; (ii) its relation to the Korteweg-de Vries equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, J., Simon, B.: Cantor sets and Schrödinger operators I. Transient and recurrent spectrum. Preprint 1980Google Scholar
  2. 2.
    Avron, J., Simon, B.: Cantor sets and Schrödinger operators II. The density of states and the Andre-Aubrey theorem. (in preparation)Google Scholar
  3. 3.
    Krylov, N., Bogoliuboff, N.: La théorie générale de la mesure et sont application à l'étude des systèmes dynamiques de la méchanique non linéaire. Ann. Math.38 65–113 (1937)Google Scholar
  4. 4.
    Bohr, H.: Fastperiodische Funktionen. Erg. Math.1 5 (1932)Google Scholar
  5. 5.
    Bourbaki, N.: Integration, Vol. V, Paris: Hermann 1965Google Scholar
  6. 6.
    Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955Google Scholar
  7. 7.
    Dubrovin, B., Matveev, V., Novikov, S.: Nonlinear equations of Korteweg-de Vries type, finite-zone linear operators, and Abelian varieties, Russ. Math. Surv.31 59–146 (1976)Google Scholar
  8. 8.
    Fink, A.: Almost periodic differential equations. Lecture Notes in Mathematics.377, Berlin, Heidelberg, New York: Springer 1974Google Scholar
  9. 9.
    Gordon, A.: On the point spectrum of the one-dimensional Schrödinger operator. Russ. Math. Surv.31 257–258 (1976)Google Scholar
  10. 10.
    Hille, E.: Lectures on ordinary differential equations. Reading, Mass: Addison-Wesley 1969Google Scholar
  11. 11.
    Pastur, L.: Spectrum of random selfadjoint operators. Usp. Math. Nauk28 (1973) 3–64, or Russ. Math. Surv.28, 1–67 (1973)Google Scholar
  12. 12.
    Johnson, R.: The recurrent Hill's equation. J. Diff. Equations (to appear)Google Scholar
  13. 13.
    Lax, P.: Almost periodic solutions of the KdV equation. SIAM Rev.18 351–375 (1976)Google Scholar
  14. 14.
    McKean, H., van Moerbeke, P.: The spectrum of Hill's equation. Inv. Math.30 217–274 (1975)Google Scholar
  15. 15.
    McKean, H., Trubowitz, E.: Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Commun. Pure Appl. Math.29 153–226 (1976)Google Scholar
  16. 16.
    Millonshchikov, V.: Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients. Diff. Equations4 203–205 (1968)Google Scholar
  17. 17.
    Moser, J.: An example of a Schrödinger operator with almost periodic potential and nowhere dense spectrum, Comm. Math. Helv.56 198–224 (1981)Google Scholar
  18. 18.
    Nemytskii, V., Stepanov, V.: Qualitative theory of differential equations. Princeton: Princeton Univ. Press 1960Google Scholar
  19. 19.
    Pastur, L.: Spectral properties of disordered systems in the one-body approximation. Commun. Math. Phys.75 179–196 (1980)Google Scholar
  20. 20.
    Sacker, R., Sell, G.: Dichotomies and invariant splittings for linear differential systems I, J. Diff. Equations15 429–458 (1974)Google Scholar
  21. 21.
    Sacker, R., Sell, G.: A spectral theory for linear differential systems. J. Diff. Equations27 320–358 (1978)Google Scholar
  22. 22.
    Sarnak, P.: Spectral behaviour of quasi-periodic potentials, Commun. Math. Phys. (to appear)Google Scholar
  23. 23.
    Scharf, G.: Fastperiodische Potentiale. Helv. Phys. Acta24 573–605 (1965)Google Scholar
  24. 24.
    Selgrade, J.: Isolated invariant sets for lows on vector bundles. Trans. Am. Math. Soc. 359–390 (1975)Google Scholar
  25. 25.
    Schwartzman, S.: Asymptotic Cycles. Ann. Math.66 270–284 (1957)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • R. Johnson
    • 1
  • J. Moser
    • 2
  1. 1.Department of MathematicsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.ETH-ZentrumZürichSwitzerland

Personalised recommendations