Communications in Mathematical Physics

, Volume 84, Issue 1, pp 1–54 | Cite as

Locality and the structure of particle states

  • Detlev Buchholz
  • Klaus Fredenhagen


Starting from the principle of locality of observables we derive localization properties of massive particle states which hold in all models of relativistic quantum theory, including gauge theories. It turns out that particles may always be regarded as well localized distributions of matter, although their mathematical description might require the introduction of non-local (unobservable) fields, which are assigned to infinite string-like regions. In spite of the non-locality of these fields one can show that such particles obey Bose- or Fermi (para) statistics, that to each particle there exists an antiparticle and that collision states of particles exist. A selfcontained exposition of the underlying physical ideas is given in the Introduction, and some perspectives for the structure of field-theoretic models arising from our analysis are discussed in the Conclusions.


Neural Network Statistical Physic Complex System Gauge Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Swieca, J. A.: Charge screening and mass spectrum, Phys. Rev.D13, 312 (1976)Google Scholar
  2. 2.
    Streater, R. F., Wightman, A. S.: PCT, spin and statistics and all that, New York: Benjamin Inc 1964Google Scholar
  3. 3.
    Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics I. Commun. Math. Phys.23, 199 (1971)Google Scholar
  4. 4.
    Doplicher, S., Haag, R., Roberts, J. E.: Local observables and particle statistics II. Commun. Math. Phys.35, 49 (1974)Google Scholar
  5. 5.
    Strocchi, F., Wightman, A. S.: Proof of the charge superselection rule in local relativistic quantum field theory, J. Math. Phys.15, 2198 (1974)Google Scholar
  6. 6.
    Buchholz, D., Fredenhagen, K.: Charge screening and mass spectrum in Abelian gauge theories, Nucl. Phys.B154, 226 (1979)Google Scholar
  7. 7.
    Haag, R., Kastler, D.: An algebraic approach to field theory, J. Math. Phys.5, 848 (1964)Google Scholar
  8. 8.
    Wilson, K.: Confinement of quarks, Phys. Rev.D10, 2445 (1974)Google Scholar
  9. 9.
    Sakai, S.: C*-algebras and W*-algebras, Berlin, Heidelberg, New-York: Springer 1971Google Scholar
  10. 10.
    Borchers, H. J.: On the vacuum state in quantum field theory, Commun. Math. Phys.1, 57 (1965)Google Scholar
  11. 11.
    Fröhlich, J., Morcchio G., Strocchi, F.: Charged sectors and scattering states in Quantum Electrodynamics, Ann. Phys.119, 241 (1979)Google Scholar
  12. 12.
    Buchholz, D.: (to be published)Google Scholar
  13. 13.
    Jost, R.: The general theory of quantized fields. Providence, Rhode Island: Am. Math. Soc., 1965Google Scholar
  14. 14.
    Hepp, K., Jost, R.: Über die Matrixelemente des Translationsoperators, Helv. Phys. Acta35, 34 (1962)Google Scholar
  15. 15.
    Borchers, H. J., Buchholz D.: (to be published)Google Scholar
  16. 16.
    Newton, T. D., Wigner, E. P.: Localized states for elementary systems, Rev. Mod. Phys.21, 400 (1949)Google Scholar
  17. 17.
    Fredenhagen, K.: On the existence of antiparticles, Commun. Math. Phys.79, 141 (1981)Google Scholar
  18. 18.
    Bisognano, J. J., Wichmann, E.: On the duality condition for a hermitean scalar field. J. Math. Phys.16, 985–1007 (1975)Google Scholar
  19. 19.
    Borchers, H. J.: Energy and momentum as observables in quantum field theory, Commun. Math. Phys.2, 49 (1966)Google Scholar
  20. 20.
    Vladimirov, V. S.: Methods of the theory of functions of many complex variables; Cambridge, Massachusetts and London: MIT Press 1966Google Scholar
  21. 21.
    Borchers, H. J.: On the converse of the Reeh-Schlieder theorem, Commun. Math. Phys.10, 269 (1968)Google Scholar
  22. 22.
    Driessler, W.: On the type of local algebras in quantum field theory, Commun. Math. Phys.59, 295 (1977)Google Scholar
  23. 23.
    Fröhlich, J.: New superselection sectors (“soliton states”) in two dimensional Bose quantum field models, Commun. Math. Phys.47, 269 (1976)Google Scholar
  24. 24.
    Borchers, H. J.: A remark on a theorem of B. Misra, Commun. Math. Phys.4, 315 (1967)Google Scholar
  25. 25.
    Kadison, R. V.: The trace in finite operator algebras, Proc. Am. Math. Soc.12, 973 (1961)Google Scholar
  26. 26.
    Borchers, H. J.: Local rings and the connection of spin with statistics, Commun. Math. Phys.1, 281 (1965)Google Scholar
  27. 27.
    Araki, H.: On the algebra of all local observables. Prog. Theor. Phys.32, 844 (1964)Google Scholar
  28. 28.
    Hepp, K.: In: Axiomatic Field Theory. Brandeis University New York, London, Paris: Gordon and Breach 1965Google Scholar
  29. 29.
    Buchholz, D., Fredenhagen, K.: (to be published)Google Scholar
  30. 30.
    Balian, R., Drouffe, J. M., Itzykson, C.: Gauge fields on a lattice II. Gauge-invariant Ising model, Phys. Rev.D11, 2098 (1974)Google Scholar
  31. 31.
    West, G. B.: Confinement in Quantum Chromodynamics, Phys. Rev. Lett.46, 1365 (1981)Google Scholar
  32. 32.
    Aks, S.: Proof that scattering implies production in quantum field theory, J. Math. Phys.6, 516 (1965)Google Scholar
  33. 33.
    Morpurgo, G.: In: Quarks and Leptons, Acta Phys. Austr. Suppl.XXI, 5 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Detlev Buchholz
    • 1
  • Klaus Fredenhagen
    • 2
  1. 1.II. Institut für Theoretische Physik der Universität HamburgHamburgGermany
  2. 2.Fakultät für Physik der Universität FreiburgFreiburgGermany

Personalised recommendations