Communications in Mathematical Physics

, Volume 79, Issue 1, pp 25–32 | Cite as

A note on the stability of phase diagrams in lattice systems

  • A. C. D. van Enter


We construct a class of non-symmetry breaking pair interactions, which change the phase diagram of then.n. Ising and classicalX Y model. Furthermore we improve earlier obtained constraints on the decrease of interactions, necessary to get analyticity properties of the pressure in manifolds of non-symmetry breaking interactions.


Neural Network Manifold Statistical Physic Phase Diagram Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daniëls, H. A. M., Enter, A. C. D. van: Commun. Math. Phys.71, 65–76 (1980)Google Scholar
  2. 2.
    Pirogov, S. A., Sinai, Ya. G.: Theor. Math. Phys. USSR25, 358–369 (1975),26, 61–76 (1976)Google Scholar
  3. 3.
    Ginibre, J., Grossmann, A., Ruelle, D.: Commun. Math. Phys.3, 187–193 (1966)Google Scholar
  4. 4.
    Israel, R. B.: Convexity in the theory of lattice gases. Princeton, NJ: Princeton University Press 1979Google Scholar
  5. 5.
    Lanford, O., Ruelle, D.: Commun. Math. Phys.13, 194–215 (1969)Google Scholar
  6. 6.
    Kastler, D., Robinson, D. W.: Commun. Math. Phys.3, 151–180 (1966)Google Scholar
  7. 7.
    Messager, A., Miracle-Sole, S.: Commun. Math. Phys.40, 187–196 (1975)Google Scholar
  8. 8.
    Iagolnitzer, D., Souillard, B.: Contribution to the Esztergom 1979. Conference on Random fields (to appear)Google Scholar
  9. 9.
    Iagolnitzer, D., Souillard, B.: Commun. Math. Phys.60, 131–152 (1978)Google Scholar
  10. 10.
    Simon, B.: Private CommunicationGoogle Scholar
  11. 11.
    Ruelle, D.: Statistical mechanics, New York, Amsterdam: Benjamin (1969)Google Scholar
  12. 12.
    Ruelle, D.: Commun. Math. Phys.3, 133–150 (1966)Google Scholar
  13. 13.
    Aizenman, M.: Phys. Rev. Lett.43, 407–409 (1979)Google Scholar
  14. 14.
    Brascamp, H. J.: Commun. Math. Phys.18, 82–96 (1970)Google Scholar
  15. 15.
    Fröhlich, J., Simon B., Spencer T.: Commun. Math. Phys.50, (1976)Google Scholar
  16. 16.
    Griffiths, R. B., Pearce, P. A.: Phys. Rev. Lett.41, (1978); J. Stat. Phys.20, 444 (1979)Google Scholar
  17. 17.
    Israel, R. B.: Proceedings Esztergom Conference on Random Fields (to appear)Google Scholar
  18. 18.
    Hille, E., Phillips, R.: Functional analysis and semigroups. Chap. III, Sect. 17. Baltimore: Waverly Press (1959)Google Scholar
  19. 19.
    Enter, A. C. D. van: (to be published)Google Scholar
  20. 20.
    Ruelle, D.: Symmetry breakdown in statistical mechanics. In: Cargèse Lectures in Physics, Vol. 4, Kastler, D. (ed.) pp. 169–194. New York, London, Paris: Gordon and Breach 1970Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • A. C. D. van Enter
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations