Communications in Mathematical Physics

, Volume 80, Issue 3, pp 421–442 | Cite as

Interacting quantum fields around a black hole

  • S. W. Hawking


If one studies interacting fields on a black hole background using ordinary Feynman diagrams, one is faced with a problem of what to do with lines that cross the horizon. To avoid this difficulty a formulation is developed which can be expressed graphically in terms of a new class of diagram with external lines only at infinity. This formalism is applied to study the question of whether spontaneously broken symmetry would be restored near the black hole. It is also used to show that a black hole can emit more particles than antiparticles even in theories where the particle number is locally conserved by a globalU(1) symmetry.


Neural Network Black Hole Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hawking, S.W.: Commun. Math. Phys.43, 199–230 (1975)Google Scholar
  2. 2.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys.31, 181 (1973)Google Scholar
  3. 3.
    Wald, R.M.: Commun. Math. Phys.45, 9–34 (1975)Google Scholar
  4. 4.
    Parker, L.: Phys. Rev. D12, 1519–25 (1976)Google Scholar
  5. 5.
    Hawking, S.W.: Phys. Rev. D14, 2460–2473 (1976)Google Scholar
  6. 6.
    Hawking, S.W.: Phys. Rev. D13, 191–7 (1976)Google Scholar
  7. 7.
    Hartle, J.B., Hawking, S.W.: Phys. Rev. D13, 2188–2203 (1976)Google Scholar
  8. 8.
    Gibbons, G.W., Perry, J.M.: Phys. Rev. Lett.36, 985–987 (1976)Google Scholar
  9. 9.
    Gibbons, G.W., Perry, M.J.: Proc. R. Soc. London A358, 467–94 (1978)Google Scholar
  10. 10.
    Gibbons, G.W., Hawking, S.W.: Phys. Rev. D15, 2752–6 (1977)Google Scholar
  11. 11.
    Birrel, N.D.: Interacting quantum field theory in curved spacetime. (To appear inQuantum Gravity: A Second Oxford Symposium. Oxford University Press: Oxford, 1981Google Scholar
  12. 12.
    Fawcett, M.: (in preparation)Google Scholar
  13. 13.
    Page, D.N.: Phys. Rev. D14, 1509–1510 (1976)Google Scholar
  14. 14.
    Toussaint, D., Treiman, S.B., Wilczek, F., Zee, A.: Phys. Rev. D19, 1036–1050 (1979)Google Scholar
  15. 15.
    Deutsch, D., Candelas, P.: Phys. Rev. D20, 3063–3080, (1979)Google Scholar
  16. 16.
    Kennedy, G.: J. Phys. A11, L173–178 (1978)Google Scholar
  17. 17.
    Kennedy, G., Critchley, R., Dowker, J.S.: Ann. Phys.125, 346–400 (1980)Google Scholar
  18. 18.
    Hawking, S.W.: Acausal Propagation in Quantum Gravity (To appear inQuantum Gravity: A Second Oxford Symposium, Oxford University Press: Oxford, 1981Google Scholar
  19. 19.
    Unruh, W.G.: Phys. Rev. D14, 870–892 (1976)Google Scholar
  20. 20.
    Christensen, S.M., Fulling, S.A.: Phys. Rev. D15, 2088–2104 (1977)Google Scholar
  21. 21.
    Candelas, P.: Phys. Rev. D21, 2185–2202 (1980)Google Scholar
  22. 22.
    Whiting, B.: (1981) (in preparation)Google Scholar
  23. 23.
    Linde, A.D.: Rep. Prog. Phys.42, 389–437 (1979)Google Scholar
  24. 24.
    Porter, N.AA., Weekes, T.C.: MNRAS183, 205–210 (1978)Google Scholar
  25. 25.
    Page, D.N., Hawking, S.W.: Astrophys. J.206, 1–7 (1976)Google Scholar
  26. 26.
    Rees, M.J.: Nature266, 333–335 (1977)Google Scholar
  27. 27.
    Meikle, W.P.F.: Nature269, 41–43 (1977)Google Scholar
  28. 28.
    Ellis, J., Gaillard, M.K., Nanopoulos, D.V.: Grand Unification and Cosmology. CERN Preprint Th. 2858-CERNGoogle Scholar
  29. 29.
    Novikov, D., Polnarev, A.G., Starobinsky, A.A., Zeldovich, Ya.B.: Astron. Astrophys.80, 104–109 (1979)Google Scholar
  30. 30.
    't Hooft, G.: Phys. Rev. Lett.37, 8–11 (1976)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • S. W. Hawking
    • 1
  1. 1.University of CambridgeCambridgeEngland

Personalised recommendations