Advertisement

Communications in Mathematical Physics

, Volume 80, Issue 3, pp 301–342 | Cite as

Unitary representations of some infinite dimensional groups

  • Graeme Segal
Article

Abstract

We construct projective unitary representations of (a) Map(S1;G), the group of smooth maps from the circle into a compact Lie groupG, and (b) the group of diffeomorphisms of the circle. We show that a class of representations of Map(S1;T), whereT is a maximal torus ofG, can be extended to representations of Map(S1;G),

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 0.
    Frenkel, I. B., Kač, V. G.: Basic representations of affine Lie algebras and dual resonance models. Inventiones math.62, 23–66 (1980)Google Scholar
  2. 1.
    Gel'fand, I. M., Vilenkin, N. Ya.: Generalized Functions, Vol. 4. New York: Academic Press 1964Google Scholar
  3. 2.
    Gel'fand, I. M., Fuks, D. B.: Funkt. Anal. Jego Prilozh.2, 92–93 (1968)Google Scholar
  4. 3.
    Goddard, P., Horsley, R.: Nucl. Phys.B111, 272–296 (1976)Google Scholar
  5. 4.
    Goddard, P., Thorn, C. B.: Phys. Lett.40B, 235–238 (1972)Google Scholar
  6. 5.
    Jacob, M. (ed.): Dual theory. Amsterdam: North-Holland 1974Google Scholar
  7. 6.
    Kač, V. G.: Adv. Math.30, 85–136 (1978)Google Scholar
  8. 7.
    Kač, V. G.: Contravariant form for infinite- dimensional Lie algebras and superalgebras. (to apper)Google Scholar
  9. 7a.
    Kač, V. G.: Adv. Math.35, 264–273 (1980)Google Scholar
  10. 8.
    Kirillov, A. A.: Unitary representations of the group of diffeomorphisms of a manifold. (to appear)Google Scholar
  11. 9.
    Lazutkin, V. F., Pankratova, T. F.: Funkt. Anal. Jego Prilozh.9, 41–48 (1975) (Russian)Google Scholar
  12. 10.
    Shale, D.: Trans. Am. Math. Soc.103 149–167 (1962)Google Scholar
  13. 11.
    Shale, D.: Stinespring, W. F.: J. Math. Mech.14, 315–322 (1965)Google Scholar
  14. 12.
    Vergne, M.: Seconde quantification et groupe symplectique. C. R. Acad. Sci. (Paris),285, A 191–194 (1977)Google Scholar
  15. 13.
    Vershik, A. M., Gel'fand, I. M., Graev, M. I.: Usp. Mat. Nauk30, 1–50 (1975)Google Scholar
  16. 14.
    Vershik, A. M., Gel'fand, I. M., Graev, M. I. Dokl. Akad. Nauk. SSSR232, 745–748 (1977)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Graeme Segal
    • 1
  1. 1.St. Catherine's CollegeOxford UniversityOxfordEngland

Personalised recommendations