Advertisement

Communications in Mathematical Physics

, Volume 81, Issue 4, pp 527–602 | Cite as

The Kosterlitz-Thouless transition in two-dimensional Abelian spin systems and the Coulomb gas

  • Jürg Fröhlich
  • Thomas Spencer
Article

Abstract

We rigorously establish the existence of a Kosterlitz-Thouless transition in the rotator, the Villain, the solid-on-solid, and the ℤ n models, forn large enough, and in the Coulomb lattice gas, in two dimensions. Our proof is based on an inductive expansion of the Coulomb gas in the sine-Gordon representation, extending over all possible distance scales, which expresses that gas as a convex superposition of dilute gases of neutral molecules whose activities are small if β is sufficiently large. Such gases are known not to exhibit screening. Abelian spin systems are related to a Coulomb gas by means of a duality transformation.

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berezinskii, V.L.: Sov. Phys. JETP32, 493 (1971)Google Scholar
  2. 1a.
    Kosterlitz, J.M., Thouless, D.J.: J. Phys. C6, 1181 (1973)Google Scholar
  3. 1b.
    Kosterlitz, J.M.: J. Phys. C7, 1046 (1974)Google Scholar
  4. 1c.
    Villain, J.: J. Phys. (Paris)32, 581 (1975)Google Scholar
  5. 1d.
    José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Phys. Rev. B16, 1217 (1977)Google Scholar
  6. 2.
    Fröhlich, J., Spencer, T.: Phys. Rev. Lett.46, 1006 (1981)Google Scholar
  7. 3.
    Brydges, D.C.: Commun. Math. Phys.58, 313 (1978)Google Scholar
  8. 3a.
    Brydges, D., Federbush, P.: Commun. Math. Phys.73, 197 (1980)Google Scholar
  9. 4.
    Stillinger, F.H., Lovett, R.: J. Chem. Phys.49, 1991 (1968)Google Scholar
  10. 5.
    Fröhlich, J., Spencer, T.: J. Stat. Phys.24, 617 (1981)Google Scholar
  11. 6.
    Fröhlich, J., Park, Y.M.: Commun. Math. Phys.59, 235 (1978)Google Scholar
  12. 7.
    Fröhlich, J., Isreal, R., Lieb, E.H., Simon, B.: J. Stat. Phys.22, 297 (1980)Google Scholar
  13. 8.
    Siegert, A.J.F.: Physica26, 30 (1960)Google Scholar
  14. 9.
    Fröhlich, J.: Commun. Math. Phys.47, 233 (1976)Google Scholar
  15. 10.
    See e.g., Leamy, H.J., Gilmer, G.H., Jackson, K.A.: In: Surface physics of crystalline materials. Blakely, J.M. (ed.). New York: Academic Press 1976Google Scholar
  16. 10a.
    Müller-Krumbhaar, H.: In: Crystal growth and materials. Kaldis, E., Scheel, H. (eds.). Dordrecht: North Holland 1977Google Scholar
  17. 10b.
    van Beijeren, H.: Phys. Rev. Lett.38, 993 (1977); and references given thereGoogle Scholar
  18. 11.
    Ginibre, J.: Commun. Math. Phys.16, 310 (1970)Google Scholar
  19. 12.
    Bricmont, J., Fontaine, J.-R., Landau, L.J.: Commun. Math. Phys.56, 281 (1977)Google Scholar
  20. 13.
    Aizenman, M., Simon, B.: Phys. Lett.76A, 281 (1980)Google Scholar
  21. 14.
    McBryan, O., Spencer, T.: Commun. Math. Phys.53, 299 (1977)Google Scholar
  22. 15.
    Elitzur, S., Pearson, R., Shigemitsu, J.: Phys. Rev. D19, 3698 (1979)Google Scholar
  23. 16.
    Lanford, O.E., Ruelle, D.: Commun. Math. Phys.13, 194 (1969)Google Scholar
  24. 17.
    Fröhlich, J., Spencer, T.: Submitted to Commun. Math. Phys.Google Scholar
  25. 18.
    Lüscher, M.: Symmetry breaking aspects of the roughening transition in gauge theories. DESY Preprint 80/81, Sept. 1980Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jürg Fröhlich
    • 1
  • Thomas Spencer
    • 2
  1. 1.Institut des Hautes Études ScintifiquesBures-sur-YvetteFrance
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations