Advertisement

Communications in Mathematical Physics

, Volume 103, Issue 2, pp 259–296 | Cite as

Navier-stokes equations for compressible fluids: Global existence and qualitative properties of the solutions in the general case

  • Alberto Valli
  • Wojciech M. Zajaczkowski
Article

Abstract

We consider the equations which describe the motion of a viscous compressible fluid, taking into consideration the case of inflow and/or outflow through the boundary. By means of some a priori estimates we prove the existence of a global (in time) solution. Moreover, as a consequence of a stability result, we show that there exist a periodic solution and a stationary solution.

Keywords

Neural Network Statistical Physic Complex System Periodic Solution Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math.17, 35–92 (1964)Google Scholar
  2. 2.
    Beirão da Veiga, H.: Diffusion on viscous fluids. Existence and asymptotic properties of solutions. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (IV)10, 341–355 (1983)Google Scholar
  3. 3.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Semin. Mat. Univ. Padova31, 308–340 (1961)Google Scholar
  4. 4.
    Fiszdon, W., Zajaczkowski, W.M.: The initial boundary value problem for the flow of a barotropic viscous fluid, global in time. Appl. Anal.15, 91–114 (1983)Google Scholar
  5. 5.
    Fiszdon, W., Zajaczkowski, W.M.: Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid, local in time. Arch. Mech.35, 497–516 (1983)Google Scholar
  6. 6.
    Fiszdon, W., Zajaczkowski, W.M.: Existence and uniqueness of solutions of the initial boundary value problem for the flow of a barotropic viscous fluid, global in time. Arch. Mech.35, 517–532 (1983)Google Scholar
  7. 7.
    Giaquinta, M., Modica, G.: Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math.330, 173–214 (1982)Google Scholar
  8. 8.
    Graffi, D.: II teorema di unicità nella dinamica dei fluidi compressibili. J. Rat. Mech. Anal.2, 99–106 (1953)Google Scholar
  9. 9.
    Itaya, N.: On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids. Kodai Math. Sem. Rep.23, 60–120 (1971)Google Scholar
  10. 10.
    Judovič, V.I.: A two-dimensional problem of unsteady flow of an ideal incompressible fluid across a given domain. Am. Math. Soc. Trans. (2)57, 277–304 (1966) [previously in Mat. Sb. (N.S.)64(106), 562–588 (1964) (in Russian)]Google Scholar
  11. 11.
    Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, 1. Paris: Dunod 1968Google Scholar
  12. 12.
    Lukaszewicz, G.: An existence theorem for compressible viscous and heat conducting fluids. Math. Meth. Appl. Sci.6, 234–247 (1984)Google Scholar
  13. 13.
    Lukaszewicz, G.: On the first initial-boundary value problem for the equations of motion of viscous and heat conducting gas. Arch. Mech.36(1984) (to appear)Google Scholar
  14. 14.
    Marcati, P., Valli, A.: Almost-periodic solutions to the Navier-Stokes equations for compressible fluids. Boll. Unione Mat. Ital. (to appear)Google Scholar
  15. 15.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ.20, 67–104 (1980)Google Scholar
  16. 16.
    Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A55, 337–342 (1979)Google Scholar
  17. 17.
    Matsumura, A., Nishida, T.: The initial boundary value problem for the equations of motion of compressible viscous and heat-conductive fluid. Preprint University of Wisconsin, MRC Technical Summary Report no. 2237 (1981)Google Scholar
  18. 18.
    Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of general fluids. In. Computing methods in applied sciences and engineering, V, Glowinski, R., Lions, J.L. (ed.). Amsterdam, New York, Oxford: North-Holland 1982Google Scholar
  19. 19.
    Matsumura, A., Nishida, T.: Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids. Commun. Math. Phys.89, 445–464 (1983)Google Scholar
  20. 20.
    Nash, J.: Le problème de Cauchy pour les équations différentielles d'un fluide général. Bull. Soc. Math. Fr.90, 487–497 (1962)Google Scholar
  21. 21.
    Padula, M.: Existence and uniqueness for viscous steady compressible motions. Arch. Ration. Mech. Anal. (to appear)Google Scholar
  22. 22.
    Secchi, P., Valli, A.: A free boundary problem for compressible viscous fluids. J. Reine Angew. Math.341, 1–31 (1983)Google Scholar
  23. 23.
    Serrin, J.: Mathematical principles of classical fluid mechanics, in “Handbuch der Physik”, Bd. VIII/1. Berlin, Göttingen, Heidelberg: Springer 1959Google Scholar
  24. 24.
    Serrin, J.: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal.3, 1–13 (1959)Google Scholar
  25. 25.
    Serrin, J.: A note on the existence of periodic solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal.3, 120–122 (1959)Google Scholar
  26. 26.
    Serrin, J.: On the uniqueness of compressible fluid motions. Arch. Ration. Mech. Anal.3, 271–288 (1959)Google Scholar
  27. 27.
    Solonnikov, V.A.: Solvability of the initial-boundary value problem for the equations of a viscous compressible fluid. J. Sov. Math.14, 1120–1133 (1980) [previously in Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova (LOMI)56, 128–142 (1976) (in Russian)]Google Scholar
  28. 28.
    Tani, A.: On the first initial-boundary value problem of compressible viscous fluid motion. Publ. Res. Inst. Math. Sci.13, 193–253 (1977)Google Scholar
  29. 29.
    Valli, A.: Uniqueness theorems for compressible viscous fluids, especially when the Stokes relation holds. Boll. Unione Mat. Ital., Anal. Funz. Appl. (V)18-C, 317–325 (1981)Google Scholar
  30. 30.
    Valli, A.: An existence theorem for compressible viscous fluids. Ann. Mat. Pura Appl. (IV)130, 197–213 (1982); (IV)132, 399–400 (1982)Google Scholar
  31. 31.
    Valli, A.: Periodic and stationary solutions for compressible Navier-Stokes equations via a stability method. Ann. Sc. Norm. Super. Pisa (IV)10, 607–647 (1983)Google Scholar
  32. 32.
    Vol'pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear differential equations. Math. USSR-Sb16 517–544 (1972) [previously in Mat. Sb. (N.S.)87(129), 504–528 (1972) (in Russian)]Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Alberto Valli
    • 1
  • Wojciech M. Zajaczkowski
    • 2
  1. 1.Dipartimento di MatematicaUniversità di TrentoPovo (Trento)Italy
  2. 2.Institute of Fundamental Technological ResearchPolish Academy of SciencesWarsawPoland

Personalised recommendations