Advertisement

Communications in Mathematical Physics

, Volume 90, Issue 3, pp 319–327 | Cite as

The order parameter in a spin glass

  • A. C. D. van Enter
  • Robert B. Griffiths
Article

Abstract

Various possible precise definitions of an Edwards-Anderson type of order parameter for an Ising model spin glass are considered, using boundary conditions for a finite system, states of an infinite system, and a duplicate-system approach. Several of these definitions are shown to yield identical results.

Keywords

Boundary Condition Neural Network Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Edwards, S. F., Anderson, P. W.: Theory of spin glasses. J. Phys. F5, 965–973 (1975)Google Scholar
  2. 2.
    Blandin, A., Gabay, M., Garel, T. On the mean-field theory of spin glasses. J. Phys. C13, 403–418 (1980)Google Scholar
  3. 3.
    Griffiths, R. B., Lebowitz, J. L.: Random spin systems: Some rigorous results. J. Math. Phys.9, 1284–92 (1968)Google Scholar
  4. 4.
    Vuillermot, P. A.: Thermodynamics of quenched random spin systems, and application to the problem of phase transitions in magnetic (spin) glasses. J. Phys. A10, 1319–33 (1977)Google Scholar
  5. 5.
    Ledrappier, F.: Pressure and variational principle for random Ising model. Commun. Math. Phys.56, 297–302 (1977)Google Scholar
  6. 6.
    van Hemmen, J. L., Palmer, R. G.: The thermodynamic limit and the replica method for short range systems. J. Phys. A15, 3881–90 (1983)Google Scholar
  7. 7. a.
    Dobrushin, R. L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Its. Appl. (USSR)13, 197–224 (1968)Google Scholar
  8. 7. b.
    Lanford, O. E., III, Ruelle, D.: Observales at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys.13, 194–215 (1969)Google Scholar
  9. 8. a.
    Sewell, G. L.: Statistical mechanical theory of metastable states. Lett. Nuovo Cimento10, 430–34 (1974)Google Scholar
  10. 8. b.
    Sewell, G. L.: Stability, equilibrium and metastability in statistical mechanics. Phys. Rep.57, 307–342 (1980)Google Scholar
  11. 9.
    Griffiths, R. B.: Spontaneous magnetization in idealized ferromagnets. Phys. Rev.152, 240–246 (1966)Google Scholar
  12. 10.
    van Enter, A. C. D., van Hemmen, J. L.: On the nature of the spin glass phase. Preprint, Heidelberg University, 1982Google Scholar
  13. 11.
    Israel, R. B.: Convexity in the theory of lattice gases. Princeton, NJ: Princeton University Press 1979Google Scholar
  14. 12.
    Roos, H.: Statistical mechanics of quantum lattice systems without translational invariance. Commun. Math. Phys.42, 83–100 (1975)Google Scholar
  15. 13.
    Walters, P.: Ergodic theory. In: Lecture Notes in Mathematics, Vol. 458. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  16. 14.
    Ruelle, D.: Statistical mechanics. Amsterdam, New York: Benjamin 1969Google Scholar
  17. 15.
    Griffiths, R. B.: A proof that the free energy of a spin system is extensive. J. Math. Phys.5, 1215–22 (1964)Google Scholar
  18. 16.
    Reed, M., Simon, B.: Functional analysis. New York, London: Academic Press 1972, 116Google Scholar
  19. 17.
    Bidaux, R., Carton, J. P., Sarma, G.: (unpublished results) (1977)Google Scholar
  20. 18.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett.35, 1792–96 (1975)Google Scholar
  21. 19.
    Kirkpatrick, S., Sherrington, D.: Infinite-ranged models of spin glasses. Phys. Rev.B17, 4384–4403 (1978)Google Scholar
  22. 20. a.
    Parisi, G.: An introduction to the statistical mechanics of amorphous systems. Les Houches lectures (1982)Google Scholar
  23. 20. b.
    Parisi, G.: Mean field theory for spin glasses. In: Disordered systems and localization. Lecture Notes in Physics Vol.149, Castellani, C., Di Castro, C., Peliti, L. (eds.) Berlin, Heidelberg, New York: Springer 1981, pp. 107–117.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. C. D. van Enter
    • 1
  • Robert B. Griffiths
    • 1
  1. 1.I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations