, Volume 11, Issue 2, pp 145–155 | Cite as

Clean triangulations

  • Nora Hartsfield
  • Gerhard Ringel


A polyhedron on a surface is called a clean triangulation if each face is a triangle and each triangle is a face. LetS p (resp.N p ) be the closed orientable (resp. nonorlentable) surface of genusp. If τ(S) is the smallest possible number of triangles in a clean triangulation ofS, the results are: τ(N1)=20, τ(S1)=24, limτ(S p )p−1=4, limτ(N p )p−1=2 forp→∞.

AMS subject classification (1980)

05 C 10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. A. Dirac: Map colour theorems.Canad. J. Math. 4 (1952), 480–490.Google Scholar
  2. [2]
    G. A. Dirac: Short proof of a map colour theorem.Canad. J. Math. 9 (1957), 225–226.Google Scholar
  3. [3]
    J. Edmonds: A combinatorial representation for polyhedral surfaces (abstract).Notices Amer. Math. Soc. 7 (1960), 646.Google Scholar
  4. [4]
    M. Jungerman, andG. Ringel, Minimum triangulations on orientable surfaces.Acta Math. 145 (1980), 121–154.Google Scholar
  5. [5]
    G. Ringel: Das Geschlecht des vollständigen paaren Graphen.Abh. Math. Sem. Univ. Hamburg. 28 (1965), 139–150.Google Scholar
  6. [6]
    G. Ringel: Wie man die geschlossenen nichtorientierbaren Flächen in mőglichst wenig Dreiecke zerlegen kann.Math. Ann. 130 (1955), 317–326.Google Scholar
  7. [7]
    W. T. Tutte: A census of plane triangulations,Canad. J. Math. 14 (1962), 21–28.Google Scholar

Copyright information

© Akadéiai Kiadó 1991

Authors and Affiliations

  • Nora Hartsfield
    • 1
    • 2
  • Gerhard Ringel
    • 1
  1. 1.University of CaliforniaSanta CruzUSA
  2. 2.Western Washington UniversityBellinghamUSA

Personalised recommendations