Advertisement

Communications in Mathematical Physics

, Volume 97, Issue 1–2, pp 59–77 | Cite as

On-shell improved lattice gauge theories

  • M. Lüscher
  • P. Weisz
Article

Abstract

By means of a spectrum conserving transformation, we show that one of the 3 coefficients in Symanzik's improved action can be chosen freely, if only spectral quantities (masses of stable particles, heavy quark potential etc.) are to be improved. In perturbation theory, the other 2 coefficients are however completely determined and their values are obtained to lowest order.

Keywords

Neural Network Statistical Physic Complex System Gauge Theory Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Symanzik, K.: Some topics in quantum field theory. In: Mathematical problems in theoretical physics. Schrader, R. et al. (eds.). Lecture Notes in Physics, Vol. 153, Berlin, Heidelberg, New York: Springer 1982Google Scholar
  2. 2.
    Symanzik, K.: Continuum limit and improved action in lattice theories. I. Principles and φ4 theory. Nucl. Phys. B226, 187 (1983)Google Scholar
  3. 3.
    Symanzik, K.: Continuum limit and improved action in lattice theories. II.O(N) nonlinear sigma model in perturbation theory. Nucl. Phys. B226, 205 (1983)Google Scholar
  4. 4.
    Weisz, P.: Continuum limit improved lattice action for pure Yang-Mills theory. I. Nucl. Phys. B212, 1 (1983)Google Scholar
  5. 5.
    Weisz, P., Wohlert, R.: Continuum limit improved lattice action for pure Yang-Mills theory. II. Nucl. Phys. B236, 397 (1984)Google Scholar
  6. 6.
    Curci, G., Menotti, P., Paffuti, G.: Symanzik's improved lagrangian for lattice gauge theory. Phys. Lett.130 B, 205 (1983)Google Scholar
  7. 7.
    Lüscher, M., Weisz, P.: Definition and general properties of the transfer matrix in continuum limit improved lattice gauge theories. DESY-preprint 84-018 (1984). Nucl. Phys. B (to be published)Google Scholar
  8. 8.
    Lüscher, M.: Some analytic results concerning the mass spectrum of Yang-Mills gauge theories on a torus. Nucl. Phys. B219, 233 (1983)Google Scholar
  9. 9.
    Lüscher, M.: On a relation between finite size effects and elastic scattering processes. Cargèse lecture notes, DESY-preprint 83-116 (1983). New York: Plenum Press (to be published)Google Scholar
  10. 10.
    Wilson, K.G.: Monte-Carlo calculations for lattice gauge theory. In: Recent developments in gauge theories, G. 't Hooft et al. (eds.). (Cargèse 1979), New York: Plenum Press 1980Google Scholar
  11. 11.
    Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Lüscher
    • 1
  • P. Weisz
    • 2
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgFederal Republic of Germany
  2. 2.II. Institut für Theoretische Physik der Universität HamburgHamburg 50Federal Republic of Germany

Personalised recommendations