Advertisement

Kurt Symanzik

  • A. Jaffe
  • H. Lehmann
  • G. Mack
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications of Kurt Symanzik

  1. Kaskaden im Atomkern. In: Heisenberg, W.: Kosm. Strahlung, 2. Aufl., S. 164. Berlin: Springer 1953Google Scholar
  2. Kurt Symanzik Praktisch wichtige Formeln aus der Relativitätskinematik. In: Heisenberg, W.: Kosm. Strahlung, S. 558Google Scholar
  3. Zur renormierten einzeitigen Bethe-Salpeter-Gleichung. Nuovo Cimento11, 88–91 (1953)Google Scholar
  4. Über das Schwingersche Funktional in der Feldtheorie. Z. Naturforsch.9a, 809–824 (1954)Google Scholar
  5. Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento1, 205–225 (1955), with H. Lehmann, W. ZimmermannGoogle Scholar
  6. Zur Vertexfunktion in quantisierten Feldtheorien. Nuovo Cimento2, No. 3, 425–432 (1955), with H. Lehmann, W. ZimmermannGoogle Scholar
  7. Derivation of dispersion relations for forward scattering. Phys. Rev.105, 743–749 (1957)Google Scholar
  8. On scattering at very high energies. Nuovo Cimento5, 659–665 (1957)Google Scholar
  9. On the formulation of quantized field theories. II. Nuovo Cimento6, 319–333 (1957), with H. Lehmann, W. ZimmermannGoogle Scholar
  10. On the renormalization of the axial vector β-decay coupling. Nuovo Cimento11, 269–277 (1959)Google Scholar
  11. Dispersion relations and vertex properties in perturbation theory. Progr. Theor. Phys.20, 690–702 (1958)Google Scholar
  12. The asymptotic condition and dispersion relations. In: Lectures on field theory and the manybody problem, pp. 67–96. Caianiello, E.R. (ed.). New York: Academic Press 1961Google Scholar
  13. On the many-particle structure of Green's functions in quantum field theory. J. Math. Phys.1, 249–273 (1960)Google Scholar
  14. Green's functions and the quantum theory of fields. In: Lectures in theoretical physics. Vol. III, pp. 490–531. Brittin, W.E., Downs, B.W., Downs, J. (eds.). New York: Interscience 1961Google Scholar
  15. Green's functions method and renormalization of renormalizable field theories. In: Lectures on high energy physics, Zagreb 1961, pp. 485–517 (reprinted, New York: Gordon and Breach 1966)Google Scholar
  16. Grundlagen und gegenwärtiger Stand der feldgleichungsfreien Feldtheorie. In: Werner Heisenberg und die Physik unserer Zeit, pp. 275–298. Braunschweig: Vieweg 1961Google Scholar
  17. Application of functional integrals to Euclidean quantum field theory. In: Analysis in function space, pp. 197–206. Martin, W.T., Segal, I. (eds.). Cambridge, MA: MIT Press 1964Google Scholar
  18. Kurt Symanzik A modified model of Euclidean quantum field theory. Techn. Rep. IMM-NYU 321 (June 1964)Google Scholar
  19. Many particle structure of Green's functions. In: Symposia on theoretical physics, Vol. 3, pp. 121–170. Ramakrishnan, A. (ed.). New York: Plenum Press 1967Google Scholar
  20. Proof and refinements of an inequality of Feynman. J. Math. Phys.6, 1155–1156 (1965)Google Scholar
  21. Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.7, 510–525 (1966)Google Scholar
  22. A method for Euclidean quantum field theory. In: Mathematical theory of elementary particles, pp. 125–140. Goodman, R., Segal, I. (eds.). Cambridge, MA: MIT Press 1966Google Scholar
  23. Schwinger functions and the classical limit of equilibrium quantum statistical mechanics. Nuovo Cimento45, 269–272 (1966)Google Scholar
  24. Euclidean proof of the Goldstone theorem. Commun. Math. Phys.6, 228–232 (1967)Google Scholar
  25. Euclidean quantum field theory. In: Local quantum field theory, pp. 152–226. Jost, R. (ed.). New York: Academic Press 1969 (Varenna lectures)Google Scholar
  26. Euclidean quantum field theory. In: Fundamental interactions at high energy, pp. 19–32. Gudehus, T., Kaiser, G., Perlmutter, A. (eds.). New York: Gordon and Breach 1969Google Scholar
  27. Renormalization of models with broken symmetry. In: Fundamental interactions at high energy, pp. 263–278. Perlmutter, A., Iverson, G.J., Williams, R.M. (eds.). New York: Gordon and Breach 1970Google Scholar
  28. Renormalization of certain models with PCAC. Lett. Nuovo Cimento2, 10–12 (1969)Google Scholar
  29. Renormalizable models with simple symmetry breaking. I. Symmetry breaking by a source term. Commun. Math. Phys.16, 48–80 (1970)Google Scholar
  30. Small-distance behaviour analysis and power counting. Commun. Math. Phys.18, 227–246 (1970)Google Scholar
  31. Small-distance behaviour in field theory. Springer Tracts Mod. Phys.57, 222–236 (1971)Google Scholar
  32. Kurt Symanzik Lectures in Lagrangian quantum field theory. Interner Bericht DESY T-71/1, Febr. 1971Google Scholar
  33. Renormalization of theories with broken symmetry. In: Cargèse lectures in physics, pp. 179–237. Bessis, J.D. (ed.). New York: Gordon and Breach 1972Google Scholar
  34. Small-distance-behaviour analysis and Wilson expansions. Commun. Math. Phys.23, 49–86 (1971)Google Scholar
  35. On computations in conformal invariant field theories. Lett. Nuovo Cimento3, 734–738 (1972)Google Scholar
  36. Currents, stress tensor and generalized unitarity in conformal invariant quantum field theory. Commun. Math. Phys.27, 247–281 (1972), with G. MackGoogle Scholar
  37. A field theory with computable large-momenta behaviour. Lett. Nuovo Cimento6, 77–80 (1973)Google Scholar
  38. Infrared singularities in theories with scalar massless particles. Acta Phys. Austriaca, Suppl.XI, 199–240 (1973)Google Scholar
  39. Kurt Symanzik On theories with massless particles. In: Renormalization of Yang-Mills fields and applications to particle physics. C.N.R.S. Marseille, 72, p. 470, pp. 221–230Google Scholar
  40. Infrared singularities and small-distance behaviour analysis. Commun. Math. Phys.34, 7–36 (1973)Google Scholar
  41. Short review of small-distance-behaviour analysis. In: Renormalization and invariance in quantum field theory, pp. 225–246. Caianiello, R. (ed.). New York: Plenum Press 1974Google Scholar
  42. Massless φ4 theory in 4−ε dimensions. Lett. Nuovo Cimento8, 771–774 (1973)Google Scholar
  43. Massless φ4 theory in 4−ε dimensions. Cargèse lectures in physics. Brézin, E. (ed.). New York: Gordon and Breach 1973 (unpublished)Google Scholar
  44. Kurt Symanzik New trends in field theory. J. Phys., Suppl.10, T. 34, pp. C1-117-126Google Scholar
  45. Small-distance behaviour in quantum field theory. In: Particles, quantum fields, and statistical mechanics. Alexanian, M., Zepeda, A. (eds.) Berlin, Heidelberg, New York: Springer 1975Google Scholar
  46. Renormalization problem in nonrenormalizable massless φ4 theory. Commun. Math. Phys.45, 79–98 (1975)Google Scholar
  47. Kurt Symanzik Renormalization problem in a class of nonrenormalizable theories. Proceedings VI GIFT Seminar on Theoretical Physics, June 1975Google Scholar
  48. Renormalization problem in massless (φ4)4+ε theory. Suppl. Acta AustriacaXVI, 177–184 (1976)Google Scholar
  49. Regularized quantum field theory. In: New developments in quantum field theory and statistical mechanics, pp. 265–280. Lévy, M., Mitter, P. (eds.) New York: Plenum Press 1977Google Scholar
  50. Kurt Symanzik 1/N expansions inP2)4−ε theory. I. Massless theory, 0<ε<2 (DESY 77/05) (unpublished)Google Scholar
  51. Cutoff dependence in lattice φ44 theory. In: Recent developments in gauge theories, pp. 313–330. 't Hooft, G., et al. (eds.). New York: Plenum Press 1980Google Scholar
  52. Anomalies of the free loop wave equation in the WKB approximation. Nucl. Phys. B173, 365–396 (1980), with M. Lüscher, P. WeiszGoogle Scholar
  53. Schrödinger representation and Casimir effect in renormalizable quantum field theory. Nucl. Phys. B190 [FS3], 1–44 (1981)Google Scholar
  54. Some topics in quantum field theory. In: Mathematical problems in theoretical physics. Conference Berlin 1981, pp. 44–58. Schrader, R., Seiler, R., Uhlenbrock, D.A. (eds.). Berlin, Heidelberg, New York: Springer 1982Google Scholar
  55. Kurt Symanzik Improved lattice actions for non-linear sigma model and non-abelian gauge theory. Workshop on non-perturbative field theory and QCD, Trieste, Dec. 1982 (to be published by World Publishing Company, Singapore)Google Scholar
  56. Improved continuum limit in the lattice O (3) non-linear sigma model. Phys. Lett.126 B, 467 (1983), with B. Berg, I. Montvay, S. MeyerGoogle Scholar
  57. Concerning the continuum limit in some lattice theories. In: 21st international conference on high energy physics, pp. C3; 254–259. Petiau, P., Porneuf, M. (eds.). Paris: Editiones de Physique 1982Google Scholar
  58. Continuum limit and improved action in lattice theories. I. Principles and φ4-theory. Nucl. Phys. B226, 187–204 (1983)Google Scholar
  59. Continuum limit and improved action in lattice theories. II. O(n)-nonlinear sigma model in perturbation theory. Nucl. Phys. B226, 205–227 (1983)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • A. Jaffe
  • H. Lehmann
  • G. Mack

There are no affiliations available

Personalised recommendations