Journal of Statistical Physics

, Volume 47, Issue 5–6, pp 959–978 | Cite as

Point processes and the position distribution of infinite boson systems

  • K. -H. Fichtner
  • W. Freudenberg
Articles

Abstract

It is shown that to each locally normal state of a boson system one can associate a point process that can be interpreted as the position distribution of the state. The point process contains all information one can get by position measurements and is determined by the latter. On the other hand, to each so-called Σc-point processQ we relate a locally normal state with position distributionQ.

Key words

Point processes Poisson processes Campbell measure compound Campbell measure boson systems locally normal states Glauber states reduced density matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Bratteli and D. W. Robinson,Operator Algebras and Quantum Statistical Mechanics I, II (Springer-Verlag, New York, 1979, 1981).Google Scholar
  2. 2.
    G. G. Emch,Algebraic Methods in Statistical Mechanics and Quantum Field Theory (Wiley-Interscience, New York, 1972).Google Scholar
  3. 3.
    K.-H. Fichtner and W. Freudenberg, On a probabilistic model of infinite quantum mechanical particle systems,Math. Nachr. 121:171–210 (1985).Google Scholar
  4. 4.
    K.-H. Fichtner and W. Freudenberg, Point process and normal states of boson systems, Preprint, Naturwissenschaftlich-Technisches Zentrum Leipzig (1986).Google Scholar
  5. 5.
    K.-H. Fichtner and W. Freudenberg, Point processes and states of infinite boson systems, Preprint, Naturwissenschaftlich-Technisches Zentrum Leipzig (1986).Google Scholar
  6. 6.
    A. Guichardet,Symmetric Hilbert Spaces and Related Topics (Lecture Notes in Mathematics 231, Springer-Verlag, Berlin, 1972).Google Scholar
  7. 7.
    R. L. Hudson and P. D. F. Ion, The Feynman-Kac formula for a canonical quantum-mechanical Wiener process, Preprint, Sonderforschungsbereich 123, Universität Heidelberg 21 (1979).Google Scholar
  8. 8.
    O. Kallenberg,Random Measures (Akademie-Verlag, Berlin, and Academic Press, New York, 1983).Google Scholar
  9. 9.
    H. Maasen, Quantum Markov processes on Fock space described by integral kernels, inQuantum Probability and Applications II, L. Accardi and W. von Waldenfelds, eds. (Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985), pp. 361–374.Google Scholar
  10. 10.
    K. Matthes, J. Kerstan, and J. Mecke,Infinitely Divisible Point Processes (Wiley, New York, 1978).Google Scholar
  11. 11.
    M. Reed and B. Simon,Methods of Modern Mathematical Physics 1 (Academic Press, New York, 1972).Google Scholar
  12. 12.
    D. Ruelle,Statistical Mechanics, Rigorous Results (Benjamin, New York, 1969).Google Scholar
  13. 13.
    D. Ruelle, Equilibrium statistical mechanics of infinite systems, inStatistical Mechanics and Quantum Field Theory, C., de Witt and R. Stora, eds. (Gordon and Breach, New York, 1971), pp. 215–240.Google Scholar
  14. 14.
    A. Wakolbinger and G. Eder, A conditionΣ λc for point processes,Math. Nachr. 116:209–232 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • K. -H. Fichtner
    • 1
  • W. Freudenberg
    • 1
  1. 1.Sektion Mathematik, UHHFriedrich-Schiller-UniversitätJenaDDR

Personalised recommendations