Space Science Reviews

, Volume 58, Issue 1, pp 1–185 | Cite as

Ultraviolet spectroscopy and remote sensing of the upper atmosphere

  • R. R. Meier


The Earth's ultraviolet airglow contains fundamental diagnostic information about the state of its upper atmosphere and ionosphere. Our understanding of the excitation and emission processes which are responsible for the airglow has undergone dramatic evolution from the earliest days of space research through the past several years during which a wealth of new information has been published from high-resolution spectroscopy and imaging experiments. This review of the field begins with an overview of the phenomenology: how the Earth looks in the ultraviolet. Next the basic processes leading to excitation of atomic and molecular energy states are discussed. These concepts are developed from first principles and applied to selected examples of day and night airglow; a detailed review of radiation transport theory is included. This is followed by a comprehensive examination of the current status of knowledge of individual emission features seen in the airglow, in which atomic physics issues as well as relevant atmospheric observations of major and minor neutral and ionic constituents are addressed. The use of airglow features as remote sensing observables is then examined for the purpose of selecting those species most useful as diagnostics of the state of the thermosphere and ionosphere. Imaging of the plasmasphere and magnetosphere is also briefly considered. A summary of upcoming UV remote sensing missions is provided.


Emission Feature Diagnostic Information Imaging Experiment Space Research Atomic Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdou, W. A., Torr, D. G., Richards, P. G., and Torr, M. R.: 1982, ‘The Effect on Thermospheric Chemistry of a Resonant Charge Exchange Reaction Involving Vibrationally Excited N2+ Ions with Atomic Oxygen’,J. Geophys. Res. 87, 6324.Google Scholar
  2. Abreu, V. J., Dalgarno, A., Yee, J. H., Chakrabarti, S., and Solomon, S. C.: 1984, ‘The Oi 989-Å Tropical Nightglow’,Geophys. Res. Letters 11, 569.Google Scholar
  3. Abreu, V. J., Eastes, R. W., Yee, J. H., Solomon, S. C., and Chakrabarti, S.: 1986, ‘Ultraviolet Nightglow Production Near the Magnetic Equator by Neutral Particle Production’,J. Geophys. Res. 91, 11365.Google Scholar
  4. Ajello, J. M.: 1969, ‘Emission Cross Sections of N2 in the Vacuum UV by Electron Impact with Application to the Aurora’, Ph.D. Thesis, University of Colorado, Boulder.Google Scholar
  5. Ajello, J. M. and Franklin, B.: 1985, “A Study of the Extreme UV Spectrum of O2 by Electron Impact’,J. Chem. Phys. 82, 2519.Google Scholar
  6. Ajello, J. M. and Shemansky, D. E.: 1985, ‘A Re-Examination of Important N2 Cross Sections by Electron Impact with Application to the Dayglow: The Lyman-Birge-Hopfield Band System andNi (119.99 nm)’,J. Geophys. Res. 90, 9845.Google Scholar
  7. Ajello, J. M., James, G. K., Franklin, B. O., and Shemansky, D. E.: 1989, ‘Medium-Resolution Studies of Extreme Ultraviolet Emission from N2 by Electron Impact: Vibrational Perturbations and Cross Sections of thec 1 u andb 1 u+ States’,Phys. Rev. A40, 3524.Google Scholar
  8. Ajello, J. M., Stewart, A. I., Thomas, G. E., and Graps, A.: 1987, ‘Solar Cycle Study of Interplanetary Lyman-alpha Variations: Pioneer Venus Orbiter Sky Background Results’,Astrophys. J. 317, 964.Google Scholar
  9. Akasofu, S.-I.: 1989, ‘Future of Magnetospheric Substorm-Storm Research’,EOS 70, 529.Google Scholar
  10. Anderson, D. E., Jr. and Meier, R. R.: 1983, ‘Determination of Atmospheric Composition and Temperature from the UV Airglow’,Planetary Space Sci. 9, 967.Google Scholar
  11. Anderson, D. E., Jr. and Meier, R. R.: 1985, ‘The OII 834 Å Dayglow: A General Model for Excitation Rate and Intensity Calculations’,Planetary Space Sci. 33, 1179.Google Scholar
  12. Anderson, D. E., Jr. and Strickland, D. J.: 1988, ‘Synthetic Dayglow Spectra and the Rayleigh Scattering Background from the Far UV to the Visible’,SPIE-UV Technology II 932.Google Scholar
  13. Anderson, D. E., Jr., Feldman, P. D., Gentieu, E. P., and Meier, R. R.: 1980, ‘The UV Dayglow 2, Lyα and Lyβ Emissions and the H Distribution in the Mesosphere and Thermosphere’,Geophys. Res. Letters 7, 519.Google Scholar
  14. Anderson, D. E., Jr., Meier, R. R., and Weller, C. S.: 1976, ‘Observations of Far and Extreme Ultraviolet Oi Emissions in the Tropical Ionosphere’,Planetary Space Sci. 24, 945.Google Scholar
  15. Anderson, D. E., Jr., Meier, R. R., and Weller, C. S.: 1979, ‘The Seasonal-Latitudinal Variation of Exospheric Helium from He 584 Å Dayglow Emissions’,J. Geophys. Res. 84, 1914.Google Scholar
  16. Anderson, D. E., Jr., Paxton, L. J., McCoy, R. P., Meier, R. R., and Chakrabarti, S.: 1987a, ‘The Atomic Hydrogen Distribution and Solar Lyman-α Flux Deduced from STP 78-1 EUV Spectrometer Observations’,J. Geophys. Res. 92, 8759.Google Scholar
  17. Anderson, D. E., Jr., Meier, R. R., Hodges, R. R., and Tinsley, B. A.: 1987b, ‘H Balmer Alpha Intensity Distributions and Line Profiles from Multiple Scattering Theory Using Realistic Geocoronal Models’,J. Geophys. Res. 92, 7619.Google Scholar
  18. Anderson, J. G. and Barth, C. A.: 1971, ‘Rocket Investigation of the Mgi and MgII Dayglow’,J. Geophys. Res. 76, 3723.Google Scholar
  19. Angel, G. C. and Samson, J. A. R.: 1988, ‘Total Photoionization Cross Sections of Atomic Oxygen from Threshold to 44.3 Å’,Phys. Rev. A38, 5578.Google Scholar
  20. Ånger, C. D., Murphree, J. S., Vallance Jones, A., King, R. A., Broadfoot, A. L., Cogger, L. L., Creutzberg, F., Gattinger, R. L., Gustafsson, G., Harris, F. R., Haslett, J. W., Llewellyn, E. J., McConnell, J. C., McEwen, D. J., Richardson, E. H., Rostoker, G., Sandel, B. R., Shepherd, G. G., Venkatesan, D., Wallis, D. D., and Witt, G.: 1987, ‘Scientific Results from the viking Ultraviolet Imager: An Introduction’,Geophys. Res. Letters 14, 383.Google Scholar
  21. Barth, C. A.: 1964, ‘Rocket Measurement of the Nitric Oxide Dayglow’,J. Geophys. Res. 69.Google Scholar
  22. Barth, C. A.: 1965,Ultraviolet Spectroscopy of Planets, Jet Propulsion Laboratory Tech. Rept. 32-822, Pasadena, California.Google Scholar
  23. Barth, C. A.: 1966, in A. E. S. Green (ed.), ‘The Ultraviolet Spectroscopy of Planets’,The Middle Ultraviolet: Its Science and Technology, John Wiley and Sons, Inc. New York.Google Scholar
  24. Barth, C. A. and Schaffner, S.: 1970, ‘OGO 4 Spectrometer Measurements of the Tropical Ultraviolet Airglow’,J. Geophys. Res. 75, 4299.Google Scholar
  25. Barth, C. A. and Steele, R. E.: 1982, ‘Rocket Observation of the NII 2143 Dayglow’,Geophys. Res. Letters 9, 559.Google Scholar
  26. Barth, C. A., Tobiska, W. K., and Siskind, D. E.: 1988, ‘Solar-Terrestrial Coupling: Low-Latitude Thermospheric Nitric Oxide’,Geophys. Res. Letters 15, 92.Google Scholar
  27. Bates, D. R.: 1988a, ‘Transition Probabilities of the Bands of the Oxygen Systems of the Nightglow’,Planetary Space Sci. 36, 869.Google Scholar
  28. Bates, D. R.: 1988b, ‘Excitation and Quenching of the Oxygen Bands in the Nightglow’,Planetary Space Sci. 36, 875.Google Scholar
  29. Bates, D. R.: 1988c, ‘Excitation of 557.7-nm Oi Line in Nightglow’,Planetary Space Sci. 36, 883.Google Scholar
  30. Bates, D. R.: 1989, ‘Oxygen Band System Transition Arrays’,Planetary Space Sci. 37, 881.Google Scholar
  31. Bauer, S. J.: 1973,Physics of Planetary Ionospheres, Springer-Verlag, New York.Google Scholar
  32. Beiting, E. J. and Feldman, P. d.: 1979, ‘Ultraviolet Spectrum of the Aurora (2000–2800 Å).J. Geophys. Res. 84, 1287.Google Scholar
  33. Bertaux, J. L. and Blamont, J. E.: 1973, ‘Interpretation of OGO 5 Lyman-Alpha Measurements in the Upper Geocorona’,J. Geophys. Res. 78, 80.Google Scholar
  34. Bertaux, J. L., Lallement, R., Kurt, V. G., and Mironova, E. N.: 1985, ‘Characteristics of the Local Interstellar Hydrogen Determined from PROGNOZ 5 and 6 Interplanetary Lyman α Line Profile Measurements with a Hydrogen Absorption Cell’,Astron. Astrophys. 150, 1.Google Scholar
  35. Blake, A. J., Carver, J. H., and Haddad, G. N.: 1966, ‘Photo-Absorption Cross Sections of Molecular Oxygen between 1250 and 23350 Å’,J. Quant. Spectr. Rad. Trans. 6, 451.Google Scholar
  36. Borst, W. L. and Zipf, E. C.: 1970, ‘Cross Section for Electron-Impact Excitation of the (0, 0) First Negative Band of N2+ from Threshold to 3 keV’,Phys. Rev. A1, 834.Google Scholar
  37. Borst, W. L. and Zipf, E. C.: 1981, ‘Lifetimes of Metastable CO and N2 Molecules’,Phys. Rev. A3, 979.Google Scholar
  38. Bowers, C. W., Feldman, P. D., Tennyson, P. D., and Kane, M.: 1987, ‘Observations of the Oi Ultraviolet Intercombination Emissions in the Terrestrial Dayglow’,J. Geophys. Res. 92, 239.Google Scholar
  39. Breig, E. L.: 1987, ‘Thermospheric Ion and Neutral Composition and Chemistry’,Rev. Geophys. Space Phys. 25, 455.Google Scholar
  40. Breig, E. L., Hanson, W. B., Hoffman, J. H., and Abdou, W. A.: 1983, ‘Photochemistry of N2+ in the DaytimeF Region’,J. Geophys. Res. 88, 7190.Google Scholar
  41. Breig, E. L., Sanatini, S., and Hanson, W. B.: 1985, ‘Thermospheric Hydrogen: The Long-Term Solar Influence’,J. Geophys. Res. 90, 5247.Google Scholar
  42. Broadfoot, A. L.: 1971, in B. M. Mccormac (ed.), ‘Dayglow Nitrogen Band Systems’,The Radiating Atmosphere, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  43. Broadfoot, A. L. and Kendall, K. R.: 1968, ‘The Airglow Spectrum, 3100–10000 Å’,J. Geophys. Res. 73, 426.Google Scholar
  44. Brooks, N. H., Rohrlich, D., and Smith, Wm. H.: 1977, ‘Transition Probabilities and Absolute Oscillator Strengths for Transitions of Ci, Oi, and Ni Observed in Absorption in Hi Regions’,Astrophys. J. 214, 328.Google Scholar
  45. Brueckner, G. E. and VanHoosier, M. E.: 1991, ‘The Ultraviolet Solar Spectrum 120–400 nm Results from the SUSIM Experiment Onboard Spacelab-2’,J. Geophys. Res. (to be submitted).Google Scholar
  46. Bruner, E. C., Jr. and Rense, W. A.: 1969, ‘Rocket Observations of Profiles of Solar Ultraviolet Emission Lines’,Astrophys. J. 157, 417.Google Scholar
  47. Brunger, M. J. and Teubner, P. J. O.: 1990, ‘Differential Cross Sections for Electron-Impact Excitation of the Electronic States of N2’,Phys. Rev. A41, 1413.Google Scholar
  48. Bucsela, E. J. and Sharp, W. E.: 1989, ‘The Relative Line Strength and Intensity of the NII 2143 Doublet’,J. Geophys. Res. 94, 12069.Google Scholar
  49. Byram, E. T., Chubb, T. A., Friedman, H., and Kupperian, J. E.: 1957, in M. Zlikoff (ed.), ‘Far UV Radiation in the Night Sky’,The Threshold of Space, Pergamon Press, London.Google Scholar
  50. Carruthers, G. R.: 1986, ‘The Far UV Cameras (NRL 803) Space Test Program Shuttle Experiment’,SPIE Ultraviolet Technology 687, 11.Google Scholar
  51. Carruthers, G. R. and Page, T.: 1972, ‘Apollo 16 Far-Ultraviolet Camera/Spectrograph: Earth Observations’,Science 177, 788.Google Scholar
  52. Carruthers, G. R. and Page, T.: 1976a, ‘Apollo 16 Far-Ultraviolet Spectra of the Terrestrial Airglow’,J. Geophys. Res. 81, 1683.Google Scholar
  53. Carruthers, G. R. and Page, T.: 1976b, ‘Apollo 16 Far-Ultraviolet Imagery of the Polar Auroras, Tropical Airglow Belts, and General Airglow’,J. Geophys. Res. 81, 483.Google Scholar
  54. Carruthers, G. R., Page, T., and Meier, R. R.: 1976, ‘Apollo 16 Lyman α Imagery of the Hydrogen Geocorona’,J. Geophys. Res. 81, 1664.Google Scholar
  55. Cartwright, D. C.: 1978, ‘Vibrational Population of the Excited States of N2 under Auroral Conditions’,J. Geophys. Res. 83, 517.Google Scholar
  56. Cartwright, D. C., Trajmar, S., Chutjian, A., and Williams, W.: 1977, ‘Electron Impact Excitation of the Electronic States of N2. II. Integral Cross Sections at Incident Energies from 10 to 50 eV’,Phys. Rev. A16, 1041.Google Scholar
  57. Cazes, S. and Emerich, C.: 1980, ‘Nonpermanent Nighttime H Lyman Alpha Emissions at Low and Middle Latitudes, Detected from the D2A Satellite’,J. Geophys. Res. 85, 6049.Google Scholar
  58. Chakrabarti, S.: 1984, ‘EUV (800–1400 Å) Observations of the Tropical Airglow’,Geophys. Res. Letters 6, 565.Google Scholar
  59. Chakrabarti, S., Kimble, R., and Bowyer, S.: 1984, ‘Spectroscopy of the EUV (350–1400 Å) Nightglow’,J. Geophys. Res. 89, 5660.Google Scholar
  60. Chakrabarti, S., Paresce, F., Bowyer, S., Chiu, Y. T., and Aikin, A.: 1982, ‘Plasmaspheric Helium Ion Distribution from Satellite Observations of HeII 304 Å’,Geophys. Res. Letters 9, 151.Google Scholar
  61. Chakrabarti, S., Paresce, F., Bowyer, S., Kimble, R., and Kumar, S.: 1983, ‘The Extreme Ultraviolet Day Airglow’,J. Geophys. Res. 88, 4898.Google Scholar
  62. Chamberlain, J. W.: 1963, ‘Planetary Coronae and Atmospheric Evaporation’,Planetary Space Sci. 11, 901.Google Scholar
  63. Chamberlain, J. W. and Hunten, D. M.: 1987,Theory of Planetary Atmospheres, Academic Pres, Orlando, Fla.Google Scholar
  64. Chandra, S., Reed, E. I., Meier, R. R., Opal, C. B., and Hicks, G. T.: 1975, ‘Remote Sensing of the Ionospheric F Layer by Use of Oi 6300 Å and Oi 1356 Å Observations’,J. Geophys. Res. 80, 2327.Google Scholar
  65. Chanin, M. L., Keckhut, P., Hauchecorne, A., and Labitzke, K.: 1989, ‘The Solar Activity —Q.B.O. Effect in the Lower Thermosphere’,Ann. Geophys. 7, 463.Google Scholar
  66. Cheung, A. S.-C., Yoshino, K., Parkinson, W. H., and Freeman, D. E.: 1986, ‘Molecular Spectroscopic Constants of O2 (3Σu), the Upper State of the Schumann-Runge Bands’,J. Molec. Spectr. 119, 1.Google Scholar
  67. Chiu, Y. T., Robinson, R. M., Collin, H. L., Chakrabarti, S., and Gladstone, G. R.: 1990, ‘Magnetospheric and Exospheric Imaging in the Extreme Ultraviolet’,Geophys. Res. Letters 17, 267.Google Scholar
  68. Chiu, Y. T., Robinson, R. M., Swenson, G. R., Chakrabarti, S., and Evans, D. S.: 1986 ‘Concept and Verification of Imaging the Outflow of Ionospheric Ions into the Magnetosphere’,Nature 322, 441.Google Scholar
  69. Christensen, A. B. and Cunningham, A. J.: 1978, ‘Laboratory Study of Oi (7990 Å) Branching Ratio’,J. Geophys. Res. 83, 4393.Google Scholar
  70. Christensen, A. B., Eastes, R. W., Feldman, P. D., and Gentieu, E. P.: 1982, ‘High-Resolution Dayglow Oi (1304 Å) and Oi (989 Å) Rocket Observations’,J. Geophys. Res. 87, 6317.Google Scholar
  71. Cleary, D. D.: 1986, ‘Daytime High-Latitude Rocket Observation of the NO γ, δ, and ε Bands’,J. Geophys. Res.,91, 11337.Google Scholar
  72. Cleary, D. D. and Barth, C. A.: 1987, ‘The NII 2143 Å Emission in the Dayglow’,J. Geophys. Res. 92, 13635.Google Scholar
  73. Cleary, D. D., McCoy, R. P., Harada, L. K., and Chakrabarti, S.: 1991, ‘Extreme Ultraviolet Emission Lines of Hei and OII in the Spectral Interval (500–900 Å) Observed with the STP 78-1 Satellite’,J. Geophys. Res. (submitted).Google Scholar
  74. Cleary, D. D., Meier, R. R., Gentieu, E. P., Feldman, P. D., and Christensen, A. B.: 1989, ‘An Analysis of the Effects of N2 Absorption on the O+ 834 Å Emission from Rocket Observations’,J. Geophys. Res. 94, 17281.Google Scholar
  75. Cohen, M. and Dalgarno, A.: 1964, ‘An Expansion Method for Calculating Atomic Properties, IV, Transition Probabilities’,Proc. Roy. Soc. A280, 258.Google Scholar
  76. Cohen, L., Feldman, U., and Doschek, G. A.: 1978, ‘XUV Spectra of the 1973 June 15 Solar Flare Observed from Skylab III. A List of Spectral Lines from 1000 to 1940 Å’,Astrophys. J. Suppl. 37, 393.Google Scholar
  77. Conway, R. R.: 1982, ‘Self-Absorption of the N2 Lyman-Birge-Hopfield Bands in the Far Ultraviolet Dayglow’,J. Geophys. Res. 87, 859.Google Scholar
  78. Conway, R. R.: 1983a, ‘Multiple Fluorescent Scattering of N2 Ultraviolet Emissions in the Atmospheres of the Earth and Titan’,J. Geophys. Res. 88, 4784.Google Scholar
  79. Conway, R. R.: 1983b, ‘Comments on the Interpretation of 3371 Å Filter-Photometer Observations and Its Implications for the AE-E Photoelectron Fluxes’,Planetary Space Sci. 31, 1223.Google Scholar
  80. Conway, R. R.: 1988, ‘Photoabsorption and Photoionization Cross Sections of O, O2, and N2 for Photoelectron Production Calculations: A Compilation of Recent Laboratory Measurements’,NRL Memo. Rept. 6155.Google Scholar
  81. Conway, R. R. and Christensen, A. C.: 1985, ‘The Ultraviolet Dayglow at Solar Maximum 2. Photometer Observations of N2 Second Positive (0, 0) Band Emission,’J. Geophys. Res. 90, 6601.Google Scholar
  82. Conway, R. R., Anderson, D. E., Jr., Budzien, S. A., and Feldman, P. D.: 1989b, ‘Ultraviolet Limb Imaging Experiment’,SPIE, Ultraviolet Technology III 1158, 2.Google Scholar
  83. Conway, R. R., Meier, R. R., and Huffman, R. E.: 1987, ‘The Far Ultraviolet Vehicle Glow on the S3-4 Satellite’,Geophys. Res. Letters 14, 628.Google Scholar
  84. Conway, R. R., Meier, R. R., and Huffman, R. E.: 1988, ‘Abundance of Atomic Oxygen in the Lower Thermosphere from Satellite Observations of theOi 1641 Å Dayglow’,Planetary Space Sci. 36, 963.Google Scholar
  85. Conway, R. R., Prinz, D. K., and Mount, G. H.: 1988, ‘Middle Atmosphere High Resolution Spectrograph’,SPIE, UV Technology II 932.Google Scholar
  86. Craven, J. D. and Frank, L. A.: 1988, ‘A Signature in the UV Dayglow of Modification to the Upper Atmosphere During Auroral Substorms’, Paper C1.2, COSPAR XXVII, Espoo, Finland.Google Scholar
  87. Cravens, T. E.: 1977, ‘Nitric Oxide Gamma Band Emission Rate Factor’,Planetary Space Sci. 25, 369.Google Scholar
  88. Cravens, T. E. and Killeen, T. L.: 1988, ‘Longitudinally Asymmetric Transport of Nitric Oxide in the E-Region’,Planetary Space Sci. 36, 11.Google Scholar
  89. Cravens, T. E., Gerard, J. C., LeCompte, M., Stewart, A. I., and Rusch, D. W.: 1985, ‘The Global Distribution of Nitric Oxide in the Thermosphere as Determined by the Atmosphere Explorer D Satellite’,J. Geophys. Res. 90, 9862.Google Scholar
  90. Crowley, G., Emery, B. A., Roble, R. G., Carlson, H. C., Jr., and Knipp, D. J.: 1989, ‘Thermosphere Dynamics During September 18–19, 1984, 1, Model Simulations’,J. Geophys. Res. 94, 16885.Google Scholar
  91. Dahl, F. and Oddershede, J.: 1986, ‘Radiative Lifetime of the “Forbidden” a1 П gX 1Σg+ Transition of N2’,Phys. Scripta 33, 135.Google Scholar
  92. Dalgarno, A., Victor, G. A., and Hartquist, T. W.: 1981, ‘The Auroral 2145 Å Feature”,Geophys. Res. Letters 8, 603.Google Scholar
  93. Daniell, r. E., Jr. and Strickland, D. J.: 1986, ‘Dependence of Auroral Middle UV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’,J. Geophys. Res. 91, 321.Google Scholar
  94. De Souza, A. R., Gousset, G., Touzeau, M., and Tu Khiet: 1985, ‘Note on the Determination of the Efficiency of the Reaction N2(A 3Σ)+O(3 P)→N2+O(1 S)’,J. Phys. B18, L661.Google Scholar
  95. Decker, D. T., Daniell, R. E., Jr., Jasperse, J. R., and Strickland, D. J.: 1986, ‘Determination of Ionospheric Electron Density Profiles from Satellite UV Emission Measurements’,Proc. SPIE Ultraviolet Technology 687, 73.Google Scholar
  96. Decker, D. T., Retterer, J. M., Jasperse, J. R., Anderson, D. N., Eastes, R. W., DelGreco, F. P., Huffman, R. E., and Foster, J. C.: 1988, ‘Determination of Daytime Midlatitude Electron Density Profiles from Satellite UV and In-Situ Data’,Proc. SPIE 932, 24.Google Scholar
  97. Degen, V.: 1969, ‘Vibrational Populations of O2(A 3Σu+) and Synthetic Spectra of the Herzberg Bands in the Night Airglow’,J. Geophys. Res. 74, 5145.Google Scholar
  98. Degen, V.: 1982, ‘Synthetic Spectra for Auroral Studies: The N2 Vegard-Kaplan Band System’,J. Geophys. Res. 87, 10541.Google Scholar
  99. Dick, K. A.: 1970, ‘Tentative Identification of Several N2 c'-a Bands in Auroras’,J. Geophys. Res. 75, 5609.Google Scholar
  100. Doering, J. P. and Gulcicek, E. E.: 1989, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen 8. The3 P5 S 0 Transition (1356 Å) from 13.9 to 30 eV’,J. Geophys. Res. 94, 2733.Google Scholar
  101. Doering, J. P., Fastie, W. G., and Feldman, P. D.: 1970, ‘Photoelectron Excitation of N2 in the Day Airglow’,J. Geophys. Res. 75.Google Scholar
  102. Doering, J. P., Gulcicek, E. E., and Vaughan, S. O.: 1985, ‘Electron Impact Measurement of Oscillator Strengths for Dipole-Allowed Transitions of Atomic Oxygen,’J. Geophys. Res. 90, 5279.Google Scholar
  103. Donahue, T. M.: 1965, ‘Some Considerations Concerning Radiation Transport in theOi 1304 Triplet in the Upper Atmosphere’,Planetary Space Sci. 13, 871.Google Scholar
  104. Donahue, T. M. and Fastie, W. G.: 1964, ‘Observation and Interpretation of Resonance Scattering of Lyman-α andOi (1300) in the Upper Atmosphere’,Space Res. IV, 304.Google Scholar
  105. Donahue, T. M. and Foderaro, A.: 1955, ‘The Effect of Resonance Absorption on the Determination of the Height of Airglow Layers’,J. Geophys. Res. 60, 75.Google Scholar
  106. Donahue, T. M. and Kumer, J. B.: 1971, ‘An Observation of the Heliumi 584 Å Dayglow Radiation Between 400 and 1000 km’,J. Geophys. Res. 76, 145.Google Scholar
  107. Donahue, T. M. and Meier, R. R.: 1967, ‘Distribution of Sodium in the Daytime Upper Atmosphere as Measured by a Rocket Experiment’,J. Geophys. Res. 72, 2803.Google Scholar
  108. Donnelly, R. F. and Pope, J. H.: 1973,The 1–3000 Å Solar Flux for a Moderate Level of Solar Activity for Use in Modeling the Ionosphere and Upper Atmosphere, NAOO Tech. Rpt. ERL 276-SEL 25.Google Scholar
  109. Doschek, G. A., Behring, W. E., and Feldman, U.: 1974, ‘The Widths of the Solar Hei and HeII Lines at 584, 537, and 304 Å’,Astrophys. J. 190, L141.Google Scholar
  110. Doschek, G. A. and Donahue, T. M.: 1970, ‘Transport of Resonance Radiation in Optically Thick Media’,Astrophys. J. 161, 737.Google Scholar
  111. Douglas, A. E. and Herzberg, G.: 1951, ‘Predissociation and Dissociation of the N2 Molecule’,Can J. Phys. 29, 294.Google Scholar
  112. Eastes, R. W. and Sharp, W. E.: 1987, ‘Rocket-Borne Spectroscopic Measurements in the Ultraviolet Aurora: The Lyman-Birge-Hopfield Bands’,J. Geophys. Res. 92, 10095.Google Scholar
  113. Eastes, R. W., Feldman, P. D., Gentieu, E. P., and Christensen, A. B.: 1985, ‘The Ultraviolet Dayglow at Solar Maximum. I. FUV Spectroscopy at 3.5 Å Resolution’,J. Geophys. Res. 90, 6594.Google Scholar
  114. Erdman, P. W. and Zipf, E. C.: 1983, ‘Electron Impact Excitation ofOi 7990-Å Multiplet’,J. Geophys. Res. 88, 7245.Google Scholar
  115. Erdman, P. W. and Zipf, E. C.: 1986a, ‘Electron Impact Excitation of theOi 1614.3 Å Line Emission’,Geophys. Res. Letters 13, 506.Google Scholar
  116. Erdman, P. W. and Zipf, E. C.: 1986b, ‘Electron Impact Excitation of theOi 1172.6 Å Multiplet’,Planetary Space Sci. 34, 1155.Google Scholar
  117. Erdman, P. W. and Zipf, E. C.: 1986c, ‘Dissociative Excitation of the N+(5 S) State by Electron Impact: Excitation Function and Quenching by N2’,J. Geophys. Res. 91, 11345.Google Scholar
  118. Erdman, P. W. and Zipf, E. C.: 1987, ‘A Laboratory Measurement of the Doppler BroadenedNII λ5005.15 Å Emission Line-Width Produced by Electron Impact Excitation of N2’,Planetary Space Sci. 35, 1471.Google Scholar
  119. Espy, P. J., Erdman, P. W., and Zipf, E. C.: 1979, ‘Electron Impact Excitation of the Terrestrial EUV Airglow’,EOS 60, 901.Google Scholar
  120. Fahr, H. J. and Smid, T.: 1982, ‘The Contribution of Singly Scattered Photons to the Optically Thick Resonance Radiation Field of the Helium Geocorona’,J. Geophys. Res. 87, 2487.Google Scholar
  121. Fahr, H. J. and Smid, T.: 1986, ‘Spectrophotometric EUV-observations and the Theoretical Modelling of the Geocoronal Hei 584/537 Å Radiation Field’,Ann. Geophys. 4, 447.Google Scholar
  122. Feldman, P. D. and Gentieu, E. P.: 1982, ‘The Ultraviolet Spectrum of an Aurora 530–1520 Å’,J. Geophys. Res. 87, 2453.Google Scholar
  123. Feldman, P. D., Anderson, D. E., Jr., Meier, R. R., and Gentieu, E. P.: 1981, ‘The Ultraviolet Dayglow, 4, The Spectrum and Excitation of Singly Ionized Oxygen’,J. Geophys. Res. 86, 3583.Google Scholar
  124. Fesen, C. and Hays, P. B.: 1982, ‘Mg+ Morphology from Visual Airglow Experiment Observations’,J. Geophys. Res. 87, 9217.Google Scholar
  125. Fesen, C., Hays, P. B., and Anderson, D. N.: 1983 ‘Theoretical Modeling of Low-Latitude Mg+’,J. Geophys. Res. 88, 3211.Google Scholar
  126. Filippelli, A. R., Chung, S., and Liu, C. C.: 1984, ‘Electron-Impact Excitation of theD 3Σ andc 4'1Σ rydberg States of N2’,Phys. Rev. A29, 1709.Google Scholar
  127. Fischer, F. and Schmidtke, G.: 1980, ‘Rocket-Borne Auroral EUV Measurements’,J. Geophys. Res. 85, 4716.Google Scholar
  128. Fox, J. L. and Dalgarno, A.: 1985, ‘The Vibrational Distribution of N2+ in the Terrestrial Ionosphere’,J. Geophys. Res. 90, 7557.Google Scholar
  129. Frank, L. A. and Craven, J. D.: 1988, ‘Imaging Results from Dynamics Explorer I’,Rev. Geophys. 26, 249.Google Scholar
  130. Frank, L. A., Sigwarth, J. B., and Craven, J. D.: 1986a, ‘On the Influx of Small Comets into the Earth's Upper Atmosphere, I, Observations’,Geophys. Res. Letters 13, 303.Google Scholar
  131. Frank, L. A., Sigwarth, J. B., and Craven, J. D.: 1986b, ‘On the Influx of Small Comets into the Earth's Upper Atmosphere, II, Interpretation’,Geophys. Res. Letters 13, 307.Google Scholar
  132. Freund, R. S.: 1972, ‘Radiative Lifetime of N2(a 1 II g) and the Formation of Metastable N2(a′1Σu+)’,J. Chem. Phys. 56, 4344.Google Scholar
  133. Friedman, H., Lichtman, S. W., and Byram, E. T.: 1951, ‘Photon Counter Measurements of Solar X-Rays and Extreme Ultraviolet Light’,Phys. Rev. 83, 1025.Google Scholar
  134. Gattinger, R. L., Harris, F. R., and Valance Jones, A.: 1985, ‘The Height Spectrum and Mechanism of Type-B Aurora and its Bearing on the Excitation of O(1 S) in Aurora’,Planetary Space Sci. 33, 207.Google Scholar
  135. Geiger, J. and Schroder, B.: 1969, ‘Intensity Perturbations Due to Configuration Interaction Observed in the Electron Energy-Loss Spectrum of N2’,J. Chem. Phys. 50, 7.Google Scholar
  136. Gentieu, E. P., Feldman, P. D., and Meier, R. R.: 1979, ‘Spectroscopy of the Extreme Ultraviolet Dayglow at 6.5 Å Resolution: Atomic and Ionic Emissions Between 530 and 1240 Å’,Geophys. Res. Letters 6, 325.Google Scholar
  137. Gentieu, E. P., Feldman, P. D., Eastes, R. W., and Christensen, A. B.: 1984, ‘EUV Airglow During Active Solar Conditions 2. Emission Between 530 and 930 Å’,J. Geophys. Res. 89, 11053.Google Scholar
  138. Gentieu, E. P., Feldman, P. D., Eastes, R. W., and Christensen, A. B.: 1981, ‘Spectroscopy of the Extreme Ultraviolet Dayglow During Active Solar conditions’,Geophys. Res. Letters 8, 1242.Google Scholar
  139. Gerard, J. C. and Noel, C. E.: 1986, ‘AE-D Measurements of the NO Geomagnetic Latitudinal Distribution and Contamination by N+ (5 S) Emission’,J. Geophys. Res. 91, 10136.Google Scholar
  140. Gerard, J. C., Anderson, D. N., and Matsushita, S.: 1977, ‘Magnetic Storm Effects on the Tropical Ultraviolet Airglow’,J. Geophys. Res. 82.Google Scholar
  141. Gilmore, F. F.: 1965, ‘Potential Energy Curves for N2, NO, O2 and Corresponding Ions’,J. Quant. Spectr. Rad. Trans. 5, 369.Google Scholar
  142. Gladstone, G. R.: 1982, ‘Radiative Transfer with Partial Frequency Redistribution in Inhomogeneous Atmospheres: Application to the Jovian Aurora’,J. Quant. Spectr. Rad. Trans. 27, 545.Google Scholar
  143. Gladstone, G. R.: 1988, ‘UV Resonance Line Dayglow Emissions on Earth and Jupiter’,J. Geophys. Res. 93, 14623.Google Scholar
  144. Gladstone, G. R., Link, R., Chakrabarti, S., and McConnell, J. C.: 1987, ‘Modeling of theOi 989 Å to 1173-Å Ratio in the Terrestrial Dayglow’,J. Geophys. Res. 92, 12445.Google Scholar
  145. Gross, R. W. F. and Cohen, N.: 1968, ‘Temperature Dependence of Chemiluminescent Reaction, II, Nitric Oxide Afterglow’,J. Chem. Phys. 48, 2582.Google Scholar
  146. Gulcicek, E. E. and Doering, J. P.: 1988, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen 5. Revised Values for the3 P3 S 0 (1304 Å) and3 P3 D 0 (989 Å) Transition Below 30 eV’,J. Geophys. Res. 93, 5879.Google Scholar
  147. Gulcicek, E. E., Doering, J. P., and Vaughan, S. O.: 1988, ‘Absolute Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen 6. The3 P5 P Transitions from 13.87 to 100 eV’,J. Geophys. Res. 93, 5885.Google Scholar
  148. Hanson, W. B.: 1969, ‘Radiative Recombination of Atomic Oxygen Ions in the Night-Time F-Region’,J. Geophys. Res. 74, 3720.Google Scholar
  149. Hays, P. B., Abreu, V. J., Solomon, S. C., and Jeng-hwa Yee: 1988, ‘The Visible Airglow Experiment, a Review’,Planetary Space Sci. 36, 21.Google Scholar
  150. Heath, D. F. and Schlesinger, B. M.: 1986, ‘The MG 280-nm Doublet as a Monitor of Changes in Solar Ultraviolet Irradiance’,J. Geophys. Res. 91, 8672.Google Scholar
  151. Hecht, J. H. and Christensen, A. B.: 1989, ‘Deducing Composition and Incident Electron Spectra from Ground-Based Auroral Optical Measurements: Variations in Oxygen Density’,J. Geophys. Res. 94, 13553.Google Scholar
  152. Hedin, A. E.: 1987, ‘MSIS-86 Thermospheric Model’,J. Geophys. Res. 92, 4649.Google Scholar
  153. Hedin, A. E., Niemann, H. B., Kasprzak, W. T., and Seiff, A.: 1983, ‘Global Empirical Model of the Venus Thermosphere’,J. Geophys. Res. 81, 73.Google Scholar
  154. Hennes, J. P.: 1966, ‘Measurement of the Ultraviolet Nightglow Spectrum’,J. Geophys. Res. 71, 763.Google Scholar
  155. Henriksen, K. and Egeland, A.: 1988, ‘The Interpretation of the Auroral Green Line: A Historic Preamble and the Present State of Knowledge’,EOS 69, 721.Google Scholar
  156. Henry, R. J. W.: 1967, ‘Photoionization Cross Sections for Atomic Oxygen’,Planetary Space Sci. 15, 1747.Google Scholar
  157. Hernandez, S. P., Doering, J. P., Abreu, V. J., and Victor, G. A.: 1983, ‘Comparison of Absolute Photoelectron Fluxes Measured on AE-C and AE-E with Theoretical Fluxes and Predicted and Measured N2 2 PG 3371 Å Volume Emission Rates’,Planetary Space Sci. 31, 221.Google Scholar
  158. Hibbert, A. and Bates, D. R.: 1981, ‘Quantal Calculation of the Lifetime of N+ (5 S) and the λ2145 Å Auroral Mystery Feature’,Planetary Space Sci. 29, 263.Google Scholar
  159. Hicks, G. T. and Chubb, T. A.: 1970, ‘Equatorial Aurora/Airglow in the Far Ultraviolet’,J. Geophys. Res. 75, 6233.Google Scholar
  160. Hinteregger, H. E., Fukui, K., and Gilson, B. R.: 1981, ‘Observational, Reference and Model Data on Solar EUV from Measurements on AE-E’,Geophys. Res. Letters 8, 1147.Google Scholar
  161. Ho, Y. K. and Henry, R. J. W.: 1983, ‘Oscillator Strengths and Collision Strengths forOII andOIII’,Astrophys. J. 264, 733.Google Scholar
  162. Holland, R. F.: 1969, ‘Excitation of Nitrogen by Electrons: The Lyman-Birge-Hopfield System of N2’,J. Chem. Phys. 51, 3940.Google Scholar
  163. Holstein, T.: 1947, ‘Imprisonment of Resonance Radiation in Gases’,Phys. Rev. 72, 1212.Google Scholar
  164. Holstein, T.: 1951, ‘Imprisonment of Resonance Radiation in Gases, II’,Phys. Rev. 83, 1159.Google Scholar
  165. Hovestadt, D., Hausler, B., and Scholer, M.: 1972, ‘Observation of Energetic Particles at Very Low Altitudes Near the Geomagnetic Equator’,Phys. Rev. Letters 28, 1340.Google Scholar
  166. Huffman, R. E., LeBlanc, F. J., Larrabee, J. C., and Paulsen, D. E.: 1980, ‘Satellite Vacuum Ultraviolet Airglow and Auroral Observations’,J. Geophys. Res. 85, 2201.Google Scholar
  167. Huffman, R. E., LeBlanc, F. J., Paulson, D. E., and Larrabee, J. C.: 1981, ‘Ultraviolet Horizon Sensing from Space’,SPIE 265, 290.Google Scholar
  168. Hummer, D. G.: 1962, ‘Non-Coherent Scattering, I. The Redistribution Functions with Doppler Broadening’,Monthly Notices Roy. Astron. Soc. 125, 21.Google Scholar
  169. Hummer, D. G.: 1969, ‘Non-Coherent Scattering, VI. Solutions of the Transfer Problem with a Frequency-Dependent Source Function’,Monthly Notices Roy. Astron. Soc. 145, 95.Google Scholar
  170. Ishimoto, M., Meng, C. I., Romick, G. J., and Huffman, R. E.: 1988, ‘Auroral Electron Energy and Flux from Molecular Nitrogen Ultraviolet Emissions Observed by the S3-4 Satellite’,J. Geophys. Res. 93, 9854.Google Scholar
  171. Ishimoto, M., Torr, M. R., Richards, P. G., and Torr, D. G.: 1986, ‘The Role of Energetic O+ Precipitation in a Mid-Latitude Aurora’,J. Geophys. Res. 91, 5793.Google Scholar
  172. Jacchia, L. G.: 1971, ‘Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles’,Smithsonian Astrophys. Obs. Spec. Rept.332.Google Scholar
  173. Jacchia, L. G.: 1977, ‘Thermospheric Temperature, Density and Composition: New Models’,Smithsonian Astrophys. Obs. Spec. Rept.375.Google Scholar
  174. Jasperse, J. R.: 1977, ‘Electron Distribution Function and Ion Concentrations in the Earth's Lower Ionosphere from Boltzmann-Fokker-Planck Theory’,Planetary Space Sci. 25, 743.Google Scholar
  175. Jasperse, J. R.: 1981, ‘The Photoelectron Distribution Function in the Terrestrial Ionosphere’,Proc. SPIE Conference, Phys. Space Plasmas 4, 53.Google Scholar
  176. Jefferies, J. T.: 1968,Spectral Line Formation, Blaisdell Publ. Co., Waltham.Google Scholar
  177. Jefferies, J. T. and White, O. R.: 1960, ‘Source Function in a Non-Equilibrium Atmosphere. VI. The Frequency Dependence of the Source Function for Resonance Lines’,Astrophys. J. 132, 767.Google Scholar
  178. Johnson, R. Barry: 1988, ‘Wide Field of View 3-Mirror Telescopes Having Common Axes’,Opt. Eng. 27, 1046.Google Scholar
  179. Johnson, C. Y., Young, J. M., and Holmes, J. C.: 1971, ‘magnetoglow — a New Geophysical Resource’,Science 171, 379.Google Scholar
  180. Julienne, P. S. and Davis, J.: 1976, ‘Cascade and Radiation Trapping Effects on Atmospheric Atomic Oxygen Emission Excited by Electron Impact’,J. Geophys. Res. 81, 1397.Google Scholar
  181. Julienne, P. S., Davis, J., and Oran, E.: 1974, ‘Oxygen Recombination in the Tropical Nightglow’,J. Geophys. Res. 79, 2540.Google Scholar
  182. Kaneda, E., Mukai, T., and Hirao, K.: 1981, in S. I. Akasofu and J. R. Kan (eds.), ‘Synoptic Features of Auroral System and Corresponding Electron Precipitation Observed by Kyokko’,Physics of Auroral Arc Formation, Am. Geophys. U., Washington, D.C.Google Scholar
  183. Kelly, Raymond L.: 1987, ‘Atomic and Ionic Spectrum Lines Below 2000 Angstroms: Hydrogen through Krypton Part 1 (H−Cr)’,J. Phys. Chem. Ref. Data 16, 1.Google Scholar
  184. Kenner, R. D. and Ogryzlo, E. A.: 1984, ‘Quenching of the O2 (A, v=2→X,v=5) Herzberg I Band by O2 and O’,Can. J. Phys. 62, 1599.Google Scholar
  185. Kirby, K., Constantinides, E. R., Babeu, S., Oppenheimer, M., and Victor, G. A.: 1979, ‘Photoionization and Photoabsorption Cross Sections of He, O, N2 and O2 for Aeronomic Calculations’,At. Nucl. Data Tables 23, 63.Google Scholar
  186. Knight, R. D.: 1982, ‘Radiative Lifetime of the5 S 2 Metastable State of N+’,Phys. Rev. Letters 48, 792.Google Scholar
  187. Kofsky, I. L.: 1988, ‘Excitation of N2 Lyman-Birge-Hopfield Bands Emission by Low Earth Orbiting Spacecraft’,Geophys. Res. Letters 15, 241.Google Scholar
  188. Kopp, J. P., Rusch, P. W., Roble, R. G., Victor, G. A., and Hays, P. B.: 1977, ‘Photoemission in the Second Positive System of Molecular Nitrogen in the Earth's Dayglow’,J. Geophys. Res. 82, 555.Google Scholar
  189. Kumar, S., Chakrabarti, S., Paresce, F., and Bowyer, S.: 1983, ‘The O+ 834-Å Dayglow: Satellite Observations and Interpretation with a Radiation Transfer Model’,J. Geophys. Res. 88, 9271.Google Scholar
  190. Kumer, J. B.: 1974, ‘Polarization of Multiple Scattered Light in Planetary Atmospheres from Solution of the Coupled Linear Integral Equations Derived for Mixed Rayleigh-Isotropic Scattering’,J. Quant. Spectr. Rad. Trans. 14, 165.Google Scholar
  191. Kumer, J. B. and James, T. C.: 1974, ‘CO2(001) and N2 Vibrational Temperatures in the 50<-Z<-130 km Altitude Range’,J. Geophys. Res. 79, 638.Google Scholar
  192. Kupperian, J. E., Jr., Byram, E. T., Chubb, T. A., and Friedman, H.: 1959, ‘Far Ultraviolet Radiation in the Night Sky’,Planetary Space Sci. 1, 3.Google Scholar
  193. Lean, J.: 1987, ‘Solar Ultraviolet Irradiance Variations: A Review’,J. Geophys. Res. 92, 839.Google Scholar
  194. Lean, J.: 1988, ‘Solar EUV Irradiances and Indices’,Adv. Space Res. 8, 263.Google Scholar
  195. Lee, Jong-Sen: 1974a, ‘Monte Carlo Simulation of Voigt Distribution in Photon Diffusion Problems’,Astrophys. J. 187, 159.Google Scholar
  196. Lee, Jong-Sen: 1974b, ‘Monte Carlo Simulation of Emission Frequencies from Partial Frequency Redistribution Functions’,Astrophys. J. 192, 465.Google Scholar
  197. Lee, Jong-Sen: 1977, ‘Simulation of Emission Frequencies from Angle-Dependent Partial Frequency Redistributions’,Astrophys. J. 218, 857.Google Scholar
  198. Lee, Jong-Sen and Meier, R. R.: 1980, ‘Angle-Dependent Frequency Redistribution in a Plane Parallel Medium: External Source Case’,Astrophys. J. 240, 185.Google Scholar
  199. Lee, J. S., Doering, J. P., Potemra, T. A., and Brace, L. H.: 1980a, ‘Measurements of the Ambient Photoelectron Spectrum from Atmosphere Explorer: I. AE-E Measurements Below 300 km During Solar Minimum Conditions’,Planetary Space Sci. 28, 947.Google Scholar
  200. Lee, J. S., Doering, J. P., Potemra, T. A., and Brace, L. H.: 1980b, ‘Measurements of the Ambient Photoelectron Spectrum from Atmosphere Explorer: II. AE-E Measurements from 300 to 1000 km During Solar Minimum Conditions’,Planetary Space Sci. 28, 973.Google Scholar
  201. Lemaire, P., Charra, J., Jouchoux, A., Vidal-Madjar, A., Artzner, G. E., Vial, J. C., Bonnet, R. M., and Skumanich, A.: 1978, ‘Calibrated Full DiskHi Lyman-α and Lyman-β Profiles’,Astrophys. J. 223, L55.Google Scholar
  202. Levasseur, A. C.: 1976, ‘Observations Atmospheriques et Astronomiques au Voisinage de 6563 A a Bord du Satellite D2A’, Ph.D. Thesis, Univ. of Paris, Paris.Google Scholar
  203. Levasseur, A. C. and Blamont, J. E.: 1973, ‘Satellite Observations of Strong Balmer Alpha Atmospheric Emissions Around the Magnetic Equator’,J. Geophys. Res. 78, 3881.Google Scholar
  204. Lewis, B. R., Berzins, L., and Carver, J. H.: 1986, ‘Oscillator Strengths for the Schumann-Runge Bands of16O2’,J. Quant. Spectr. Rad. Trans. 36, 209.Google Scholar
  205. Link, R., Chakrabarti, S., Gladstone, G. R., and McConnell, J. C.: 1988a, ‘An Analysis of Satellite Observations of theOi EUV Dayglow’,J. Geophys. Res. 93, 2693.Google Scholar
  206. Link, R., Gladstone, G. R., and Chakrabarti, S.: 1988b, ‘A Reanalysis of Rocket Measurements of the Ultraviolet Dayglow’,J. Geophys. Res. 93, 14631.Google Scholar
  207. Luken, W. L. and Sinanoglu, O.: 1976, ‘Oscillator Strengths for Transitions Involving Excited States Not Lowest of Their Symmetry Oxygeni and OxygenII Transition’,J. Chem. Phys. 64, 1495.Google Scholar
  208. Mandleman, M., Carrington, T., and Young, R. A.: 1973, ‘Predissociation and Its Inverse, Using Resonance Absorption NO (C 2 II) — N + O’,J. Chem. Phys. 58, 84.Google Scholar
  209. Mange, P. and Meier, R. R.: 1970, ‘OGO III Observations of the Lyman-Alpha Intensity and the Hydrogen Concentration Beyond 5 Earth Radii’,J. Geophys. Res. 75, 1837.Google Scholar
  210. Marinelli, W. J., Green, B. D., DeFaccio, M. A., and Blumberg, W. A. M.: 1988, ‘Vibrational Relaxation and Intersystem Crossing in N2(a1 П g)’,J. Phys. Chem. 92, 3429.Google Scholar
  211. Marinelli, W. J., Kessler, W. J., Green, B. D., and Blumberg, W. A. M.: 1989, ‘The Radiative Lifetime of N2(a1 П g,v = 0-2)’,J. Phys. Chem. 91, 71.Google Scholar
  212. Mason, N. J. and Newell, W. R.: 1987, ‘Electron Impact Total Excitation Cross Section of thea 1 П g State of N2’,J. Phys. B: At. Mol. Phys. 20, 3913.Google Scholar
  213. McCoy, R. P.: 1981, ‘Rocket Measurements of Thermospheric Odd Nitrogen and Comparisons with a Diffusive Transport Chemical Model’, Ph.D. Thesis, Univ. of Colorado, Boulder.Google Scholar
  214. McCoy, R. P.: 1983a, ‘Thermospheric Odd Nitrogen 1. NO, N(4S) and O(3P) Densities from Rocket Measurements of the NO Delta and Gamma Bands and the O2 Herzberg I Bands’,J. Geophys. Res. 88, 3197.Google Scholar
  215. McCoy, R. P.: 1983b, ‘Thermospheric Odd Nitrogen 2. Comparisons of Rocket Observations with a Diffusive Transport Chemical Model’,J. Geophys. Res. 88, 3206.Google Scholar
  216. McCoy, R. P. and Carruthers, G. R.: 1988, ‘Spartan-282: The High Resolution Airglow/Aurora Spectrograph (HIRAAS)’,SPIE, Ultraviolet Tech. II 932, 297.Google Scholar
  217. McCoy, R. P., Anderson, D. E., Jr., and Chakrabarti, S.: 1985, ‘F2 Region Ion Densities from Analysis of O+ 834-Å Airglow: A Parametric Study and Comparison with Satellite Data’,J. Geophys. Res. 90, 12257.Google Scholar
  218. McCoy, R. P., Paxton, L. J., Meier, R. R., Cleary, D. D., Prinz, D. K., Wolfram, K. D., Christensen, A. B., Pranke, J. B., and Kayser, D. C.: 1987, in J. M. Goodman (ed.), ‘RAIDS: An Orbiting Observatory for Ionospheric Remote Sensing from Space’,Effect of the Ionosphere on Communication, Navigation and Surveillance Systems, Naval Research Laboratory, Washington, D.C., p. 519.Google Scholar
  219. McCoy, R. P., Wolfram, K. D., Meier, R. R., Paxton, L. J., Cleary, D. D., Prinz, D. K., Anderson, D. E., Jr., Christensen, A. B., Pranke, J. B., Sivjee, G. G., and Kayser, D. C.: 1986, ‘The Remote Atmospheric and Ionospheric Detection System’,SPIE-UV Technology 687, 142.Google Scholar
  220. McDade, I. C. and Llewellyn, E. J.: 1984, ‘Atomic Oxygen Concentrations in the Auroral Ionosphere’,Geophys. Res. Letters 11, 247.Google Scholar
  221. McLaughlin, R. W.: 1977, ‘Vacuum Ultraviolet and Visible Radiation from Electron Impact Excitation of Nitrogen, Hydrogen, Oxygen, the Light Hydrocarbons and the Rare Gases’, Ph.D. Thesis, Univ. of Pittsburgh.Google Scholar
  222. Meier, R. R.: 1969, ‘Balmer-Alpha and Lyman-Beta in the Hydrogen Geocorona’,J. Geophys. Res.74.Google Scholar
  223. Meier, R. R.: 1975, ‘Resonance Scattering from Optically Thin Expanding Cometary Atmospheres’,Astron. Astrophys. 40, 373.Google Scholar
  224. Meier, R. R.: 1977, ‘Some Optical and Kinetic Properties of the Nearby Interstellar Medium’,Astron. Astrophys. 55, 211.Google Scholar
  225. Meier, R. R.: 1981, ‘A Study of Partial Frequency Redìstribution of Monochromatic Source Radiation’,J. Quant. Spectr. Rad. Trans. 25, 1137.Google Scholar
  226. Meier, R. R.: 1982, ‘Spectroscopy of theOi 989- and 7990-Å Multiplets in the Dayglow Airglow’,J. Geophys. Res. 87, 6307.Google Scholar
  227. Meier, R. R.: 1987a, ‘Thermospheric Aurora and Airglow’,Rev. Geophys. 25, 471.Google Scholar
  228. Meier, R. R.: 1987b, ‘Issues Relating to “Holes” in theOi 1304 Å Far UV Dayglow’,Planetary Space Sci. 35, 1297.Google Scholar
  229. Meier, R. R.: 1990, ‘The Scattering Rate of Solar 834 Å Radiation by Magnetospheric O+ and O+ +’,Geophys. Res. Letters 17, 1613.Google Scholar
  230. Meier, R. R. and Anderson, D. E., Jr.: 1983, ‘Determination of Atmospheric Composition and Temperature from the UV Dayglow’,Planetary Space Sci. 31, 967.Google Scholar
  231. Meier, R. R. and Conway, R. R.: 1983, ‘On the N2 Lyman-Birge-Hopfield Band Nightglow’,J. Geophys. Res. 88, 4929.Google Scholar
  232. Meier, R. R. and Conway, R. R.: 1985, ‘The1 D3 S Transition in Atomic Oxygen: A New Method of Measuring the O Abundance in Planetary Thermospheres’,Geophys. Res. Letters 12, 601.Google Scholar
  233. Meier, R. R. and Lee, Jong-Sen: 1981, ‘Angle-Dependent Frequency Redistribution: Internal Source Case’,Astrophys. J. 250, 376.Google Scholar
  234. Meier, R. R. and Lee, Jong-Sen: 1982, ‘An Analysis of theOi 1304 Å Dayglow Using a Monte Carlo Resonant Scattering Model with Partial Frequency Redistribution’,Planetary Space Sci. 30, 439.Google Scholar
  235. Meier, R. R. and Mange, P.: 1970, ‘Geocoronal Hydrogen: An Analysis of the Lyman-α Airglow from OGO-4’,Planetary Space Sci. 18, 303.Google Scholar
  236. Meier, R. R. and Mange, P.: 1973, ‘Spatial and Temporal Variations of the Lyman Alpha Airglow and Related Atomic Hydrogen Distributions’,Planetary Space Sci. 21, 309.Google Scholar
  237. Meier, R. R. and Opal, C. B.: 1973, ‘Tropical UV Ares: Comparison of Brightness with foF2’,J. Geophys. Res. 78, 3189.Google Scholar
  238. Meier, R. R. and Prinz, D. K.: 1971, ‘Observations of theOi 1304 Å Airglow from OGO-4’,J. Geophys. Res. 76, 4608.Google Scholar
  239. Meier, R. R. and Weller, C. S.: 1972, ‘EUV Resonance Radiation from Helium Atoms and Ions in the Geocorona’,J. Geophys. Res. 77, 1190.Google Scholar
  240. Meier, R. R. and Weller, C. S.: 1974, ‘Extreme Ultraviolet Observations of the Latitudinal Variation of Helium’,J. Geophys. Res. 79, 1575.Google Scholar
  241. Meier, R. R. and Weller, C. S.: 1975, ‘Observations of Equatorial EUV Bands: Evidence for Low-Altitude Precipitation of Ring Current Helium’,J. Geophys. Res. 80, 2813.Google Scholar
  242. Meier, R. R., Anderson, D. E., Jr., and Nicolet, M.: 1982, ‘Radiation Field in the Troposphere and Stratosphere from 240–1000 nm. I. General Analysis’,Planetary Space Sci. 30, 923.Google Scholar
  243. Meier, R. R., Anderson, D. E., Jr., Paxton, L. J., McCoy, R. P., and Chakrabarti, S.: 1987, ‘TheOi 3d 3 D 0 — 2p 4 3 P Transition at 1026 Å in the Day Airglow’,J. Geophys. Res. 92, 8767.Google Scholar
  244. Meier, R. R., Carruthers, G. R., Page, T. L., and Levasseur-Regourd, A. C.: 1977, ‘Geocoronal Ly-Beta and Ba-Alpha Emissions Measured During the Apollo-16 Mission’,J. Geophys. Res. 82, 737.Google Scholar
  245. Meier, R. R., Conway, R. R., Feldman, P. D., Strickland, D. J., and Gentieu, E. P.: 1982, ‘Analysis of Nitrogen and Oxygen Far Ultraviolet Auroral Emissions’,J. Geophys. Res. 87, 2444.Google Scholar
  246. Meier, R. R., Conway, R. R., Anderson, D. E., Jr., Feldman, P. D., Eastes, R. W., Gentieu, E. P., and Christensen, A. B.: 1985, ‘The Ultraviolet Dayglow at Solar Maximum 3. Photoelectron-Excited Emissions of N2 and O’,J. Geophys. Res. 90, 6608.Google Scholar
  247. Meier, R. R., Strickland, D. J., Feldman, P. D., and Gentieu, E. P.: 1980, ‘The Ultraviolet Dayglow 1. Far UV Emissions of N and N2’,J. Geophys. Res. 85, 2177.Google Scholar
  248. Meier, R. R., Strickland, D. J., Hecht, J. H., and Christensen, A. B.: 1989, ‘Deducing Composition and Incident Electron Spectra from Ground-Based Auroral Optical Measurements: A Study of Auroral Red Line Processes’,J. Geophys. Res. 94, 13541.Google Scholar
  249. Meier, R. R., Widing, K., and Feldman, U.: 1991, ‘Analysis of Solar OII/OIII Multiplets at 834 Å: Implications for the Emission Measure Distribution in the Vicinity of 40 000 K’,Astrophys. J. 369, 570.Google Scholar
  250. Mende, S. B., Swenson, G. R., and Miller, K. L.: 1985, ‘Observations of E and F Region Mg+ from Spacelab 1’,J. Geophys. Res. 90, 6667.Google Scholar
  251. Meng, C.-I. and Huffman, R. E.: 1984, ‘Ultraviolet Imaging from Space of the Aurora Under Full Sunlight’,Geophys. Res. Letters 11, 315.Google Scholar
  252. Meng, C.-I. and Huffman, R. E.: 1987,Preliminary Observations from the Auroral and Ionospheric Remote Sensing Imager, Johns Hopkins Applied Physics Lab Technical Digest, Vol. 8.Google Scholar
  253. Meng, C.-I., Huffman, R. E., Skrivanek, R. A., Strickland, D. J., and Daniell, R. E.: 1987, ‘Remote Sensing of Ionosphere by Using Ultraviolet and Visible Emissions’,SPIE-UV Technology 687, 2.Google Scholar
  254. Meyerott, R. E. and Swenson, G. R.: 1990, ‘A Surface Chemistry Model for the Production of N2 LBH Spacecraft Glow’,Planetary Space Sci. 38, 555.Google Scholar
  255. Mihalas, D.: 1978,Stellar Atmospheres, W. H. Freeman and Co., San Francisco.Google Scholar
  256. Mitchell, A. C. G. and Zemansky, M. W.: 1961,Resonance Radiation and Excited Atoms, Cambridge University Press, Cambridge, 1961.Google Scholar
  257. Molina, L. T. and Molina, M. J.: 1986, ‘Absolute Absorption Cross Sections of Ozone in the 185-to 350-nm Wavelength Range’,J. Geophys. Res. 91, 14501.Google Scholar
  258. Morrison, M. D.: 1985, ‘Laboratory Measurement of the OI 1173/989 Å Branching Ratio’,Planetary Space Sci. 33, 135.Google Scholar
  259. Morrison, M. D. and Meier, R. R.: 1988, ‘The O 1989 and 1173 Å Multiplets in the Dayglow’,Planetary Space Sci. 36, 987.Google Scholar
  260. Morrison, M. D., Bowers, C. W., Feldman, P. D., and Meier, R. R.: 1990, ‘The EUV Dayglow at High Spectral Resolution’,J. Geophys. Res. 95, 4113.Google Scholar
  261. Morrison, D., Christensen, A. B., and Cunningham, A. J.: 1981, ‘Measured Branching Ratios for O112 D and2 P Transitions in the Wavelength Range 530 to 800 Å’,J. Geophys. Res. 86, 3589.Google Scholar
  262. Morrison, M. D., Cunningham, A. J., and Christensen, A. B.: 1983, ‘EUV Branching Ratios for Ionized Nitrogen and Oxygen Emissions’,J. Quant. Spectr. Rad. Trans. 29, 137.Google Scholar
  263. Mount, G. H. and Rottman, G. J.: 1983, ‘The Solar Absolute Spectral Irradiance at 1216 Å and 1800–3173 Å: January 12, 1983’,J. Geophys. Res. 88, 6807.Google Scholar
  264. Mount, G. H. and Rottman, G. J.: 1985, ‘Solar Absolute Spectral Irradiance 118–300 nm: July 25, 1983’,J. Geophys. Res. 90, 13031.Google Scholar
  265. Mumma, M. J. and Zipf, E. C.: 1971a, ‘Dissociative Excitation of Vaccum-Ultraviolet Emission Features by Electron Impact on Molecular Gases. II. N2’,J. Chem. Phys. 55, 5582.Google Scholar
  266. Mumma, M. J. and Zipf, E. C.: 1971b, ‘Dissociative Excitation of Vacuum Ultraviolet Emission Features by Electron Impact on Molecular Gases. I. H2 and O2’,J. Chem. Phys. 55, 1661.Google Scholar
  267. Murtagh, D. P.: 1988, ‘The O2 Schumann-Runge System: New Calculations of Photodissociation Cross-Sections’,Planetary Space Sci. 36, 819.Google Scholar
  268. Murtagh, D. P., McDade, I. C., Greer, R. G. H., Stegman, J., Witt, G., and Llewellyn, E. J.: 1986, ‘ETON 4: An Experimental Investigation of the Altitude Dependence of the O2(A 3Σu+) Vibrational Populations in the Nightglow’,Planetary Space Sci. 34, 811.Google Scholar
  269. Newberry, I. Y., Comfort, R. H., Richards, P. G., and Chappell, C. R.: 1989, ‘Thermal He+ in the Plasmasphere: Comparison of Observations with Numerical Calculations’,J. Geophys. Res. 94, 15 265.Google Scholar
  270. Nicolet, M., Cieslik, S., and Kennes, R.: 1988, ‘Aeronomic Problems of Molecular Oxygen Photodissociation. II. Theoretical Absorption Cross-Sections of the Schumann-Runge Bands at 79 K’,Planetary Space Sci. 36, 1039.Google Scholar
  271. Nicolet, M. and Kennes, R.: 1988b, ‘Aeronomic Problems of Molecular Oxygen Photodissociation. III. Solar Spectral Irradiances in the Region of the O2 Herzberg Continuum, Schumann-Runge Bands and Continuum’,Planetary Space Sci. 36, 1059.Google Scholar
  272. Nicolet, M. and Kennes, R.: 1988b, ‘Aeronomic Problems of Molecular Oxygen Photodissociation. IV. The Various Parameters for the Herzberg Continuum’,Planetary Space Sci. 36, 1069.Google Scholar
  273. O'Neil, R. R., Lee, E. T. P., and Huppi, E. R.: 1979, ‘Auroral O(1 S) Production and Loss Processes: Ground-Based Measurements of the Artificial Auroral Experiment, Precede’,J. Geophys. Res. 84, 823.Google Scholar
  274. Ogawa, H. S. and Judge, D. L.: 1986, ‘Absolute Solar Flux Measurements Shortward of 575 Å’,J. Geophys. Res. 91, 7089.Google Scholar
  275. Ogawa, H. S., Phillips, E., and Judge, D. L.: 1984, ‘Line Width of the Solar EUV Hei Resonance Emissions at 584 and 537 Å’,J. Geophys. Res. 89, 7537.Google Scholar
  276. Opal, C. B.: 1973, ‘Enhancements of the Photoelectron-Excited Dayglow During Solar Flares’,Space Res. 13, 797.Google Scholar
  277. Oran, E. S. and Strickland, D. J.: 1978, ‘Photoelectron Flux in the Earth's Ionosphere’,Planetary Space Sci. 26, 1161.Google Scholar
  278. Paresce, F.: 1979, ‘EUV Observations of the Equatorial Aurora’,J. Geophys. Res. 84, 4409.Google Scholar
  279. Paresce, F., Bowyer, S., and Kumar, S.: 1973, ‘Observations of the He II 304-Å Radiation in the Night Sky’,J. Geophys. Res. 78, 71.Google Scholar
  280. Paresce, F., Bowyer, S., and Kumar, S.: 1974, ‘On the Distribution of He+ in the Plasmasphere from Observations of Resonantly Scattered He II 304-Å Radiation’,J. Geophys. Res. 79, 174.Google Scholar
  281. Parisot, J. P.: 1986, ‘Excitation of Herzberg I and II Bands in the Atmospheres of Earth and Venus’,Ann. Geophys. 4, 481.Google Scholar
  282. Park, H., Feldman, P. D., and Fastie, W. G.: 1977, ‘The Extreme Ultraviolet (750–1230 Å) Spectrum of an Aurora’,Geophys. Res. Letters 4, 41.Google Scholar
  283. Paxton, L. J. and Strickland, D. J.: 1988, ‘EUV Imaging of the Ionosphere from Space’,Proc. SPIE-UV Technology II 932, 190.Google Scholar
  284. Paxton, L. J., Anderson, D. E., Jr., and Huffman, R. E.: 1991, ‘Satellite Observations of the OI 1356 Å Nightglow’,J. Geophys. Res. (submitted).Google Scholar
  285. Paxton, L. J., Cox, R., Strickland, D. J., and Meier, R. R.: 1991, ‘Global Modelling of the FUV Airglow’,J. Geophys. Res. (to be submitted).Google Scholar
  286. Piper, L. G.: 1982, ‘The Excitation of O(1 S) in the Reaction Between N2(A 3Σu+) and O(3 P)’,J. Chem. Phys. 77(5), 2372.Google Scholar
  287. Piper, L. G. and Caledonia, G. E.: 1981, ‘Rate Constants for Deactivation of N2(A 3Σu,v′ = 0,1) by O’,J. Chem. Phys. 75, 2847.Google Scholar
  288. Porter, H. S., Jackman, C. H., and Green, A. E. S.: 1976, ‘Efficiencies for Production of Atomic Oxygen by Relativistic Proton Impact in Air’,J. Chem. Phys. 65, 154.Google Scholar
  289. Pradhan, A. K. and Saraph, H. E.: 1977, ‘Oscillator Strengths for Dipole Transitions in Neutral Oxygen’,J. Phys. B10, 3365.Google Scholar
  290. Prinz, D. K. and Meier, R. R.: 1971, ‘OGO-4 Observations of the Lyman-Birge-Hopfield Bands in the Day Airglow’,J. Geophys. Res. 76, 6146.Google Scholar
  291. Rairden, R. L. and Craven, J. D.: 1986, ‘Geocoronal Imaging with Dynamics Explorer’,J. Geophys. Res. 91, 13613.Google Scholar
  292. Rees, D. and Fuller-Rowell, T. J.: 1988, ‘Understanding the Transport of Atomic Oxygen within the Thermosphere Using a Numerical Global Thermospheric Model’,Planetary Space Sci. 36, 935.Google Scholar
  293. Richards, P. G. and Torr, D. G.: 1984, ‘An Investigation of the Consistency of the Ionospheric Measurements of the Photoelectron Flux and Solar EUV Flux’,J. Geophys. Res. 89, 5625.Google Scholar
  294. Richards, P. G. and Torr, D. G.: 1985, ‘The Altitude Variation of the Ionospheric Photoelectron Flux: A Comparison of Theory and Measurement’,J. Geophys. Res. 90, 2877.Google Scholar
  295. Roble, R. G. and Dickinson, R. E.: 1989, ‘How Will Changes in Carbon Dioxide and Methane Modify the Mean Structure of the Mesosphere and Thermosphere?’,Geophys. Res. Letters 16, 1441.Google Scholar
  296. Roble, R. G., Forbes, J. M., and Marcos, F. A.: 1987, ‘Thermospheric Dynamics During the March 22, 1979, Magnetic Storm’,J. Geophys. Res. 92, 6045.Google Scholar
  297. Rohrbaugh, R. P., Tinsley, B. A., Rassoul, H., Sahai, Y., Teixeira, N. R., Tull, R. G., Doss, D. R., Cochran, A. L., Cochran, W. D., and Barker, E. S.: 1983, ‘Observations of Optical Emissions from Precipitation of Energetic Neutral Atoms and Ions from the Ring Current’,J. Geophys. Res. 88, 6317.Google Scholar
  298. Rottman, G. J.: 1985a, in C. S. Zerefos and A. Ghazi (eds.), ‘Solar Ultraviolet Irradiance 1982 and 1983’,Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  299. Rottman, G. J.: 1985b, ‘Solar Cycle Variation of Ultraviolet, 120–200 nm, Irradiance Measured by the Solar Mesosphere Explorer, 1982 through 1985’,EOS 66, 1009.Google Scholar
  300. Rountree, S. P.: 1977, ‘Electron-Impact Excitation of Atomic Oxygen:3 P–3s 3 S o and3 P–3s 3 S o’,J. Phys. B: Atom. Molec. Phys. 10, 2719.Google Scholar
  301. Rountree, S. P. and Henry, R. J. W.: 1972, ‘Electron-Impact Excitation Cross Sections for Atomic Oxygen:3 P3 S’,Phys. Rev. A6, 2106.Google Scholar
  302. Rusch, D. W. and Sharp, W. E.: 1981, ‘Nitric Oxide Delta Band Emission in the Earth's Atmosphere: Comparison of a Measurement and a Theory’,J. Geophys. Res. 86, 10111.Google Scholar
  303. Samson, J. A. R. and Pareek, P. N.: 1985, ‘Absolute Photoionization Cross Sections of Atomic Oxygen’,Phys. Rev. A31, 1470.Google Scholar
  304. Scholer, M., Hovestadt, D., and Morfill, G.: 1975, ‘Energetic He+ Ions from the Radiation Belt at Low Altitudes Near the Geomagnetic Equator’,J. Geophys. Res. 80, 80.Google Scholar
  305. Sharp, W. E.: 1971, ‘Rocket-Borne Spectroscopic Measurements in the Ultraviolet Aurora: Nitrogen Vegard-Kaplan Bands’,J. Geophys. Res. 76, 987.Google Scholar
  306. Sharp, W. E.: 1978, ‘The Ultraviolet Aurora: The Spectrum Between 2100 Å and 2300 Å’,Geophys. Res. Letters 5, 703.Google Scholar
  307. Sharp, W. E.: 1986, ‘Sources of the Emission Features Between 2000 and 8000 Å in the Thermosphere’,Can. J. Phys. 64, 1594.Google Scholar
  308. Sharp, W. E. and Rusch, D. W.: 1981, ‘Chemiluminescence of Nitric Oxide: The NO (C 2 ПA 2Σ+) Rate Constant’,J. Quant. Spectr. Rad. Trans. 25, 413.Google Scholar
  309. Sharp, W. E. and Siskind, D. E.: 1989, ‘Atomic Emission in the Ultraviolet Nightglow’,Geophys. Res. Letters 16, 1453.Google Scholar
  310. Sharp, W. E., Rees, M. H., and Stewart, A. I.: 1979, ‘Coordinated Rocket and Satellite Measurements of an Auroral Event. 2. The Rocket Observations and Analysis’,J. Geophys. Res. 84, 1977.Google Scholar
  311. Shemansky, D. E. and Broadfoot, A. L.: 1971, ‘Excitation of N2 and N2+ Systems by Electron, II, Excitation Cross Sections and N2 IPG Low Pressure Afterglow’,J. Quant. Spectr. Rad. Trans. 11, 1401.Google Scholar
  312. Shemansky, D. E., Ajello, J. M., and Hall, D. T.: 1985, ‘Electron Impact Excitation of H2: Rydberg Band Systems and the Benchmark Dissociative Cross Section for H Lyman-Alpha’,Astrophys. J. 296, 765.Google Scholar
  313. Shemansky, D. E., Judge, D. L., and Jessen, J. M.: 1984, in Y. Kondo, F. C. Bruhweiler, and B. D. Savage (eds.), ‘Pioneer 10 and Voyager Observations of the Interstellar Medium in Scattered Emission of the He 584-Å and HLyα 1216-Å Lines’,Local Interstellar Medium, NASA Conf. Publ. 2345, p. 24.Google Scholar
  314. Shepherd, G. G.: 1984, ‘Atomic Oxygen Concentrations in the Auroral Thermosphere: Application of a Thermospheric Temperature Criterion’,Geophys. Res. Letters 11, 1117.Google Scholar
  315. Siskind, D. E. and Barth, C. A.: 1987, ‘Rocket Observation of the N II 2143 Å Emission in an Aurora’,Geophys. Res. Letters 14, 479.Google Scholar
  316. Siskind, D. E., Barth, C. A., and Roble, R. G.: 1989a, ‘The Reponse of Thermospheric Nitric Oxide to an Auroral Storm, 1, Low and Middle Latitudes’,J. Geophys. Res. 94, 16885.Google Scholar
  317. Siskind, D. E., Barth, C. A., Evans, D. S., and Roble, R. G.: 1989b, ‘The Response of Thermospheric Nitric Oxide to an Auroral Storm, 2, Auroral Latitudes’,J. Geophys. Res. 94, 16899.Google Scholar
  318. Sivjee, G. G.: 1983, ‘Differences in Near UV (≈3400–4300 Å) Optical Emissions from Midday Cusp and Nighttime Auroras’,J. Geophys. Res. 88, 435.Google Scholar
  319. Skumanich, A. and Lites, B. W.: 1986, ‘Radiative Transfer Diagnostics: Understanding Multilevel Transfer Calculations, I, Analysis of the Full Statistical Equilibrium Equations’,Astrophys. J. 310, 419.Google Scholar
  320. Slanger, T. G.: 1983, ‘Auroral N2 Emission’,Planetary Space Sci. 31, 1525.Google Scholar
  321. Slanger, T. G.: 1986, ‘Auroral N2(c 4 1Σu+a 1 П g Emission, II’,Planetary Space Sci. 34, 399.Google Scholar
  322. Slanger, T. G. and Degen, V.: 1986, ‘The Rotationally-Resolved Oxygen Afterglow, 373–474 nm’,Planetary Space Sci. 34, 931.Google Scholar
  323. Slanger, T. G. and Huestis, D. L.: 1981, ‘O2(c 1ΣuX 3Σg) Emission in the Terrestrial Nightglow’,J. Geophys. Res. 86, 3551.Google Scholar
  324. Stahel, D., Leoni, M., and Dressler, K.: 1983, ‘Nonadiabatic Representations of the1Σu and1 П u States of the N2 Molecule’,J. Chem. Phys. 79(6), 2541.Google Scholar
  325. Stegman, J. and Murtagh, D. P.: 1988, ‘High Resolution Spectroscopy of Oxygen U.V. Airglow’,Planetary Space Sci. 36, 927.Google Scholar
  326. Stewart, A. I.: 1965, ‘Fast Photoelectrons and the Dayglow’, Ph.D. Thesis, Queen's University, Belfast.Google Scholar
  327. Stewart, A. I.: 1970, ‘Photoionization Coefficients and Photoelectron Impact Excitation Efficiencies in the Daytime Ionosphere’,J. Geophys. Res. 75, 6333.Google Scholar
  328. Stone, E. J. and Zipf, E. C.: 1973, ‘Excitation of Atomic Nitrogen by Electron Impact’,J. Chem. Phys. 58, 4278.Google Scholar
  329. Stone, E. J. and Zipf, E. C.: 1974, ‘Electron Impact Excitation of the3 S 0 and5 S 0 States of Atomic Oxygen’,J. Chem. Phys. 60, 4237.Google Scholar
  330. Strickland, D. J.: 1979, ‘The Transport of Resonance Radiation in a Non-Isothermal Medium-Effect of Varying Doppler Width’,J. Geophys. Res. 84, 5890.Google Scholar
  331. Strickland, D. J. and Anderson, D. E., Jr.: 1977, ‘TheOi 1304 Å Nadir Intensity/Column Production Rate Ratio and its Application to Airglow Studies’,J. Geophys. Res. 82, 1013.Google Scholar
  332. Strickland, D. J. and Anderson, D. E., Jr.: 1983, ‘Radiation Transport Effects on the 1356 Å Limb Intensity Profile in the Dayglow’,J. Geophys. Res. 88, 9260.Google Scholar
  333. Strickland, D. J. and Christensen, A. B.: 1988,Dayglow Optical Backgrounds: Calculated Spectra and Limb Profiles from 1200–8000 Å, Aerospace Report No. TOR-0088(3409-91)-1, Aerospace Corp., Los Angeles.Google Scholar
  334. Strickland, D. J. and Donahue, T. M.: 1970, ‘Excitation and Radiative Transport ofOi 1304 Å Resonance Radiation, I’,Planetary Space Sci. 18, 661.Google Scholar
  335. Strickland, D. J. and Meier, R. R.: 1982,A Photoelectron Model for the Rapid Computation of Atmospheric Excitation Rates, NRL Memorandum Report 5004.Google Scholar
  336. Strickland, D. J. and Rees, M. H.: 1974, ‘TheOi 1304 and 1356 Emissions in Aurorae’,Planetary Space Sci. 22, 465.Google Scholar
  337. Strickland, D. J., Barnes, R. P., and Andersen, D. E., Jr.: 1988,UV Background Calculations: Rayleigh Scattered and Dayglow Backgrounds from 1200–3000 Å, AFGL-TR-88-0200, Geophysics Laboratory, Hanscomb Air Force Base, Mass.Google Scholar
  338. Strickland, D. J., Cox, R., Barnes, R., Paxton, L., and Meier, R. R.: 1991,A Model for UV Global Imaging (in preparation).Google Scholar
  339. Strickland, D. J., Daniell, R. E., Jr., Decker, D., Jasperse, J. R., and Carlson, H. C.: 1984,Determination of Ionospheric Electron Density Profiles from Satellite UV Emission Measurements, Air Force Geophysics Lab Technical Report 84-0140.Google Scholar
  340. Strickland, D. J., Jasperse, J. R., and Whalen, J. A.: 1983, ‘Dependence of Auroral FUV Emissions on the Incident Electron Spectrum and Neutral Atmosphere’,J. Geophys. Res. 88, 8051.Google Scholar
  341. Strickland, D. J., Meier, R. R., Hecht, J. H., and Christensen, A. B.: 1989, ‘Deducing Composition and Incident Electron Spectra from Ground-Based Auroral Optical Measurements: Theory and Model Results’,J. Geophys. Res. 94, 13527.Google Scholar
  342. Strobel, D. F. and Shemansky, D. E.: 1982, ‘EUV Emission from Titan's Upper Atmosphere: Voyager 1 Encounter’,J. Geophys. Res. 87, 1361.Google Scholar
  343. Swenson, G. R. and Meyerott, R. E.: 1988, ‘Spacecraft Ram Cloud Atom Exchange and N2 LBH Glow’,Geophys. Res. Letters 15, 245.Google Scholar
  344. Swift, D. W., Smith, R. W., and Akasofu, S.-I.: 1989, ‘Imaging the Earth's Magnetosphere’,Planetary Space Sci. 37, 379.Google Scholar
  345. Swift, W. R., Torr, D. G., Richards, P. G., Bhatt, P. P., Hamilton, C. M., and Goodwin, R. L.: 1989, ‘Twilight Observations and Modelling of the N2+ First Negative Bands’,EOS 70, 1234.Google Scholar
  346. Takacs, P. Z. and Feldman, P. D.: 1977, ‘Far Ultraviolet Atomic and Molecular Nitrogen Emission in the Dayglow’,J. Geophys. Res. 82, 5011.Google Scholar
  347. Tayal, S. S. and Henry, R. J. W.: 1988, ‘Electron-Impact Excitation of Atomic Oxygen’,Phys. Rev. A38, 5945.Google Scholar
  348. Tayal, S. S. and Henry, R. J. W.: 1989, ‘Oscillator Strengths and Electron Collisional Excitation Cross Sections for Atomic Oxygen’,Phys. Rev. A39, 4531.Google Scholar
  349. Tennyson, P. D., Feldman, P. D., Hartig, G. F., and Henry, R. C.: 1986, ‘Near-Midnight Observations of Nitric Oxide δ-and γ-Band Chemiluminescence’,J. Geophys. Res. 91, 10141.Google Scholar
  350. Thomas, G. E.: 1963, ‘Lyman Alpha Scattering in the Earth's Hydrogen Geocorona, 1’,J. Geophys. Res. 68, 2639.Google Scholar
  351. Thomas, G. E. and Anderson, D. E., Jr.: 1976, ‘Global Atomic Hydrogen Density Derived from OGO-6 Lyman Alpha Measurements’,Planetary Space Sci. 24, 303.Google Scholar
  352. Thomas, G. E. and Bohlin, R. C.: 1972, ‘Lyman-Alpha Measurements of Neutral Hydrogen in the Outer Geocorona and in Interplanetary Space’,J. Geophys. Res. 77, 2752.Google Scholar
  353. Thomas, J. M. and Kaufman, F.: 1985, ‘Rate Constants of the Reactions of Metastable N2(A 3Σu+ inv=0, 1, 2, and 3 with Ground State O2 and O’,J. Chem. Phys. 83, 2900.Google Scholar
  354. Thomas, R. J.: 1981, ‘Analyses of Atomic Oxygen, the Green Line, and Herzberg Bands in the Lower Thermosphere’,J. Geophys. Res. 86, 206.Google Scholar
  355. Thomas, R. J. and Young, R. A.: 1981, ‘Measurements of Atomic Oxygen and Related Airglows in the Lower Thermosphere’,J. Geophys. Res. 86, 7389.Google Scholar
  356. Thomas, R. N.: 1957, ‘The Source Function in a non-Equilibrium Atmosphere. I. The Resonance Lines’,Astrophys. J. 125, 260.Google Scholar
  357. Timothy, J. G.: 1977, in Oran R. White (ed.), ‘The Solar Spectrum Between 300 and 1200 Å’,The Solar Output and Its Variation, Colorado Associated University Press, Boulder.Google Scholar
  358. Tinsley, B. A.: 1972, ‘Oi andNi Allowed Transitions in the Airglow and Aurora’,Ann. Geophys. 28, 155.Google Scholar
  359. Tinsley, B. A.: 1976a, ‘Evidence that the Recovery Phase Ring Current Consists of Helium Ions’,J. Geophys. Res. 81, 6193.Google Scholar
  360. Tinsley, B. A.: 1976b, ‘Energetic Neutral Atom Precipitation During Magnetic Storms: Optical Emission, Ionization, and Energy Deposition at Low and Middle Latitudes’,J. Geophys. Res. 84, 1855.Google Scholar
  361. Tinsley, B. A.: 1981, ‘Neutral Atom Precipitation — A Review’,J. Atmospheric Terrest. Phys. 43, 617.Google Scholar
  362. Tinsley, B. A. and Bittencourt, J. A.: 1975, ‘Determination of F Region Height and Peak Electron Density at Night Using Airglow Emissions from Atomic Oxygen’,J. Geophys. Res. 80, 2333.Google Scholar
  363. Tinsley, B. A., Christensen, A. B., Bittencourt, J. A., Gouveia, H., Angreji, P. D., and Takahashi, H.: 1973, ‘Excitation of Oxygen Line Emissions in the Tropical Nightglow’,J. Geophys. Res. 78, 1174.Google Scholar
  364. Tinsley, B. A., Rohrbaugh, R. P., Sahai, Y., and Teixeira, N. R.: 1982, ‘Energetic Oxygen Precipitation as a Source of Vibrationally Excited N2+ 1N Emissions Observed at Low Latitudes’,Geophys. Res. Letters 9, 543.Google Scholar
  365. Torr, D. G. and Sharp, W. E.: 1979, ‘The Concentration of Atomic Oxygen in the Auroral Lower Thermosphere’,Geophys. Res. Letters 6, 860.Google Scholar
  366. Torr, M. R. and Torr, D. G.: 1982, ‘The Role of Metastable Species in the Thermosphere’,Rev. Geophys. Space Phys. 20, 91.Google Scholar
  367. Torr, M. R. and Torr, D. G.: 1985, ‘Ionization Frequencies for Solar Cycle 21: Revised’,J. Geophys. Res. 90, 6675.Google Scholar
  368. Torr, M. R., Torr, D. G., Ong, R. A., and Hinteregger, H. E.: 1979, ‘Ionization Frequencies for Major Thermospheric Constituents as a Function of Solar Cycle 21’,Geophys. Res. Letters 6, 771.Google Scholar
  369. Torr, M. R., Torr, D. G., and Eun, J. W.: 1985, ‘A Spectral Search for Lyman-Birge-Hopfield Band Nightglow from Spacelab 1’,J. Geophys. Res. 90, 4427.Google Scholar
  370. Tousey, R., Purcell, J. D., Austin, W. E., Garrett, D. L., and Widing, K. G.: 1963, ‘New Photographic Spectra of the Sun in the Extreme Ultraviolet’,Space Res. IV, 703.Google Scholar
  371. Vallance Jones, A.: 1971, ‘Auroral Spectroscopy’,Space Sci. Rev. 11, 776.Google Scholar
  372. Vallance Jones, A.: 1974,Aurora, D. Reidel Publ. Co., Dordrecht, Holland.Google Scholar
  373. Vallance Jones, A. and Gattinger, R. L.: 1976, ‘Quenching of the N2 Vegard-Kaplan System in Aurora’,J. Geophys. Res. 81, 497.Google Scholar
  374. Vallance Jones, A., Meier, R. R., and Shefov, N. N.: 1985, ‘Atmospheric Quantal Emissions: A Review of Recent Results’,J. Atmospheric Terrest. Phys. 47, 623.Google Scholar
  375. Vaughn, S. O. and Doering, J. P.: 1987, ‘Absolute Experimental Differential and Integral Electron Excitation Cross Sections for Atomic Oxygen 3. The (3 P3 D 0) Transition (989 Å) from 20 to 200 eV with Improved Values for the (3 P3 S 0) Transition (1304 Å)’,J. Geophys. Res. 92, 7749.Google Scholar
  376. Victor, G. A. and Dalgarno, A.: 1982, ‘The 2145 Å Dayglow and the High Altitude Nitric Oxide Density’,Geophys. Res. Letters 9, 866.Google Scholar
  377. Wallace, L. and McElroy, M. B.: 1966, ‘The Visual Dayglow’,Planetary Space Sci. 14, 677.Google Scholar
  378. Wallace, L., Barth, C. A., Pearce, J. B., Kelly, K. K., Anderson, D. E., Jr., and Fastie, W. G.: 1970, ‘Mariner 5 Measurement of the Earth's Lyman Alpha Emission’,J. Geophys. Res. 75, 3769.Google Scholar
  379. Watanabe, K.: 1958, in H. E. Landsberg and J. van Mieghem (eds.), ‘Ultraviolet Absorption Processes in the Upper Atmosphere’,Advances in Geophysics, Academic Press, New York.Google Scholar
  380. Weller, C. S. and Meier, R. R.: 1974, ‘First Satellite Observations of the He+ 304 Å Radiation and Its Interpretation’,J. Geophys. Res. 79, 1572.Google Scholar
  381. Wells, W. C., Borst, W. L., and Zipf, E. C.: 1971, ‘Absolute Cross Section for the Production of O(5 S 0) by Electron Impact Dissociation of O2’,Chem. Phys. Letters 12, 288.Google Scholar
  382. Wells, W. C., Borst, W. L., and Zipf, E. C.: 1976, ‘Translational Spectroscopy of Metastable Fragments Produced by Dissociative Excitation of Atmospheric Gases by Electron Impact. I. Nitrogen’,Phys. Rev. A14, 695.Google Scholar
  383. White, O. R.: 1977,The Solar Output and Its Variation, Colorado Associated University Press, Boulder.Google Scholar
  384. Wiese, W. L., Smith, M. W., and Glennon, B. M.: 1966,Atomic Transition Probabilities, NSRDS-NBS4, Vol. 1, U.S. Government Printing Office, Washington, D.C.Google Scholar
  385. Wight, G. R., van der Wiel, M. J., and Brion, C. E.: 1976, ‘Dipole Excitation Ionization and Fragmentation of N2 and CO in the 10–16 eV Region’,J. Phys. Sect. B9, 675.Google Scholar
  386. Wu, C. Y. R., Chen, J. K., and Judge, D. L.: 1983, ‘Atomic Nitrogen Emissions from Photodissociation of N2’,J. Geophys. Res. 88, 2163.Google Scholar
  387. Yelle, R. V. and Wallace, L.: 1989, ‘Resonance Line Transfer Calculations by Doubling Thin Layers. I. Comparison with Other Techniques’,Astrophys. J. 346, 481.Google Scholar
  388. Yoshino, K. and Tanaka, Y.: 1977, ‘High Resolution VUV Absorption Spectrum of N2, Homogeneous Perturbation Betweenc 4(O)1Σu+ andb′(1)1Σu+ Levels’,J. Mol. Spectr. 66, 219.Google Scholar
  389. Yoshino, K., Freeman, D. E., Esmond, J. R., and Parkinson, W. H.: 1983, ‘High Resolution Absorption Cross Section Measurements and Band Oscillator Strengths of the (1,0)–(12,0) Shumann-Runge Bands of O2’,Planetary Space Sci. 31, 339.Google Scholar
  390. Yoshino, K., Freeman, J. R., Esmond, J. R., and Parkinson, W. H.: 1987, ‘High Resolution Absorption Cross Sections and Band Oscillator Strengths of the Schumann-Runge Bands of Oxygen at 79 K’,Planetary Space Sci. 34.Google Scholar
  391. Yung, Y. L. and Goody, R. M.: 1976, ‘Photometric Properties of Io and Their Influence on Line Formation in the Atmosphere’,Icarus 29, 57.Google Scholar
  392. Zeippen, C. J. M., Seaton, M. J., and Morton, D. C.: 1977, ‘SomeOi Oscillator Strengths and the Interstellar Abundance of Oxygen’,Monthly Notices Roy. Astron. Soc. 181, 527.Google Scholar
  393. Zipf, E. C. and Erdman, P. W.: 1985, ‘Electron Impact Excitation of Atomic Oxygen: Revised Cross Sections’,J. Geophys. Res. 90, 11087.Google Scholar
  394. Zipf, E. C. and Fastie, W. G.: 1964, ‘An Observation of the (0, 0) Negative Band of N2+ in the Dayglow’,J. Geophys. Res. 69, 2357.Google Scholar
  395. Zipf, E. C. and Gorman, M. R.: 1980, ‘Electron-Impact Excitation of the Singlet States of N2, 1, The Birge-Hopfield System (b 1 П uX 1Σg+)’,J. Chem. Phys. 73, 813.Google Scholar
  396. Zipf, E. C. and McLaughlin, R. W.: 1978, ‘On the Dissociation of Nitrogen by Electron Impact and by EUV Photoabsorption’,Planetary Space Sci. 26, 449.Google Scholar
  397. Zipf, E. C., Kao, W. W., and Erdman, P. W.: 1985, ‘On the Simultaneous Ionization-Excitation of theOii (834 Å) Resonance Transition by Electron Impact on Atomic Oxygen’,Planetary Space Sci. 33, 1309.Google Scholar
  398. Zipf, E. C., McLaughlin, R. W., and Gorman, M. R.: 1979, ‘A Study of the Excitation and Radiative Decay of the 3s3 D 0 and 3d 3 D 0 Levels of Atomic Oxygen’,Planetary Space Sci. 27, 719.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • R. R. Meier
    • 1
  1. 1.E. O. Hulburt Center for Space ResearchNaval Research LaboratoryWashington, DCUSA

Personalised recommendations