Communications in Mathematical Physics

, Volume 105, Issue 3, pp 473–509 | Cite as

Classical and quantum mechanical systems of Toda-lattice type

III. Joint eigenfunctions of the quantized systems
  • Roe Goodman
  • Nolan R. Wallach


In a previous paper it was shown that certain Schrödinger operatorsH=Δ − V onR such as the Hamiltonians for the quantized one-dimensional lattice systems of Toda type (either non-periodic or periodic) are part of a family of mutually commuting differential operatorsH=L1, ...,L onR. The potentialV in these cases is associated with a finite root system of rank ℓ, and the top-order symbols of the operatorsL i are a set of functionally independent polynomials that generate the polynomial invariants for the Weyl groupW of the root system. In this paper it is proved that the spaces of joint eigenfunctions for the family of operatorsL i have dimension |W|. In the case of the periodic Toda lattices it is shown that the Hamiltonian has only bound states. An integrable holomorphic connection with periodic coefficients is constructed on a trivial |W|-dimensional vector bundle over ℂ, and it is shown that the joint eigenfunctions correspond exactly to the covariant constant sections of this bundle. Hence the eigenfunctions can be calculated (in principle) by integrating a system of ordinary differential equations. These eigenfunctions are holomorphic functions on ℂ, and are multivariable generalizations of the classical Whittaker functions and Mathieu functions. A generalization of Hill's determinant method is used to analyze the monodromy of the connection.


Vector Bundle Toda Lattice Quantum Mechanical System Whittaker Function Polynomial Invariant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bo]
    Bourbaki, N.: Groupes et algébres de Lie, Chaps. IV–VI (Éléments de mathématique, Fasc. XXXIV). Paris: Hermann 1968Google Scholar
  2. [D-M]
    Dobrokhotov, S. Yu., Maslov, V.P.: Finite-zone, almost-periodic solutions in WKB approximations. J. Sov. Math.16, 1433–1508 (1981)Google Scholar
  3. [Fa]
    Faddeev, L.D.: Quantum completely-integrable models in field theory. In: Mathematical physics reviews, Vol. 1. Novikov, S.P. (ed.). Chur: Harwood Academic Publishers 1980Google Scholar
  4. [G-S]
    Gel'fand, I.M., Shilov, G.E.: Generalized functions, Vol. 2: Spaces of fundamental functions (transl. by M. Friedman et al.). New York: Academic Press 1967Google Scholar
  5. [Go1]
    Goodman, R.: Elliptic and subelliptic estimates for operators in an enveloping algebra. Duke Math. J.47, 819–833 (1980)Google Scholar
  6. [Go2]
    Goodman, R.: Horospherical functions on symmetric spaces. Canadian Math. Soc. Conference Proceedings, Vol. 1, pp. 125–133. Providence, R.I.: A.M.S. 1981Google Scholar
  7. [G-W1]
    Goodman, R., Wallach, N.R.: Whittaker vectors and conical vectors. J. Funct. Anal.39, 199–279 (1980)Google Scholar
  8. [G-W2]
    Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. I. Commun. Math. Phys.83, 355–386 (1982)Google Scholar
  9. [G-W3]
    Goodman, R., Wallach, N.R.: Structure and unitary cocycle representations of loop groups and the group of diffeomorphisms of the circle. J. Reine Angew. Math.347, 69–133; erratum352, 220 (1984)Google Scholar
  10. [G-W4]
    Goodman, R., Wallach, N.R.: Classical and quantum-mechanical systems of Toda lattice type. II. Commun. Math. Phys.94, 177–217 (1984)Google Scholar
  11. [Gu1]
    Gutzwiller, M.: The quantum mechanical Toda lattice. Ann. Phys.124, 347–381Google Scholar
  12. [Gu2]
    Gutzwiller, M.: The quantum mechanical Toda lattice. II. Ann. Phys.133, 304–331Google Scholar
  13. [H-C]
    Harish-Chandra: Spherical functions on a semi-simple Lie group. I. Am. J. Math.80, 241–310 (1958)Google Scholar
  14. [Ha]
    Hashizume, M.: Whittaker functions on semisimple Lie groups. Hiroshima Math. J.12, 259–293 (1982)Google Scholar
  15. [He]
    Helgason, S.: Groups and geometric analysis. New York: Academic Press 1984Google Scholar
  16. [Hi]
    Hill, G.W.: On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math.8, 1–36 (1886)Google Scholar
  17. [vK1]
    von Koch, H.: Sur les déterminants infinis et les équations différentielles linéaires. Acta Math.16, 217–295 (1892)Google Scholar
  18. [vK2]
    von Koch, H.: Sur un nouveau critère de convergence pour les déterminants infinis. Ark. Mat. Astronomi och Fysik 7, No. 4 (1912)Google Scholar
  19. [Ko]
    Kostant, B.: On Whittaker vectors and representation theory. Invent. Math.48, 101–184 (1978)Google Scholar
  20. [N-S]
    Nelson, E., Stinespring, W.F.: Representation of elliptic operators in an enveloping algebra. Am. J. Math.81, 547–560 (1959)Google Scholar
  21. [O-T]
    Olive, D., Turok, N.: The symmetries of Dynkin diagrams and the reduction of Toda field equations. Nucl. Phys. B215 [FS7], 470–494 (1983)Google Scholar
  22. [O-P]
    Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Rep.94, 313–404 (1983)Google Scholar
  23. [Ri]
    Riesz, F.: Les systèmes d'équations linéaires à une infinité d'inconnues. Paris: Gauthier-Vaillars 1913Google Scholar
  24. [Si]
    Simons, B.: Adv. Math.24, 244–273 (1977)Google Scholar
  25. [W-W]
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. Cambridge: Cambridge University Press 1927Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Roe Goodman
    • 1
  • Nolan R. Wallach
    • 1
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA

Personalised recommendations