Communications in Mathematical Physics

, Volume 105, Issue 3, pp 415–441 | Cite as

Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions

  • Joel A. Smoller
  • Arthur G. Wasserman
Article

Abstract

We study the bifurcation of radially symmetric solutions of Δ+f(u)=0 onn-balls, into asymmetric ones. We show that ifu satisfies homogeneous Neumann boundary conditions, the asymmetric components in the kernel of the linearized operators can have arbitrarily high dimension. For general boundary conditions, we prove some theorems which give bounds on the dimensions of the set of asymmetric solutions, and on the structure of the kernels of the linearized operators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 0.
    Agmon, S.: Lectures on elliptic boundary value problems. Princeton: Van Nostrand 1965Google Scholar
  2. 1.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne. In: Lecture Notes in Mathematics, Vol. 194. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  3. 2.
    Dancer, E.N.: On non-radially symmetric bifurcation. J. Lond. Math. Soc.20, 287–292 (1979)Google Scholar
  4. 3.
    Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry of positive solutions of nonlinear elliptic equations inR n. Commun. Math. Phys.68, 202–243 (1979)Google Scholar
  5. 4.
    Helgason, S.: Topics in harmonic analysis on homogeneous spaces. Boston: Birkhäuser 1981Google Scholar
  6. 5.
    Smoller, J., Wasserman, A.: Global bifurcation of steady-state solutions. J. Differ. Equations39, 269–290 (1981)Google Scholar
  7. 6.
    Smoller, J., Wasserman, A.: Existence, uniqueness, and non-degeneracy of positive solutions of semilinear elliptic equations. Commun. Math. Phys.95, 129–159 (1984)Google Scholar
  8. 7.
    Smoller, J., Wasserman, A.: Symmetry-breaking for positive solutions of semilinear elliptic equations. Arch. Ration. Mech. Anal. (to appear)Google Scholar
  9. 8.
    Smoller, J., Wasserman, A.: An existence theorem for positive solutions of semilinear elliptic equations. Arch. Ration. Mech. Anal. (to appear)Google Scholar
  10. 9.
    Smoller, J.: Shock waves and reaction-diffusion equations. Berlin, Heidelberg, New York, Tokyo: Springer 1983Google Scholar
  11. 10.
    Vanderbauwhede, A.: Local bifurcation and symmetry. Research Notes in Mathematics, No. 75. Boston: Pitman 1982Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Joel A. Smoller
    • 1
  • Arthur G. Wasserman
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations