On the symplectic structure of general relativity
Article
- 159 Downloads
- 25 Citations
Abstract
The relation between the symplectic structures on the canonical and radiative phase spaces of general relativity is exhibited.
Keywords
Neural Network Statistical Physic General Relativity Phase Space Complex System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Dirac, P. A. M.: Proc. R. Soc. (London)A246, 333 (1958); Phys. Rev.114, 924 (1959); Lectures on quantum mechanics, New York: Yeshiva Univ. Press 1964Google Scholar
- 2.Bergmann, P. G.: Quantization of generally covariant field theories. ARL report 63–56 (1963)Google Scholar
- 3.Kuchar, K.: In: Quantum gravity. Isham, C. J., Penrose, R., Sciama, D. W. (eds.). Oxford: Oxford Univ. Press 1981Google Scholar
- 4.Arnowitt, R., Deser, S., Misner, C. W.: Phys. Rev.118, 1100 (1960); In: Gravitation an introduction to current research, Witten, L. (ed.). New York: Wiley, 1962Google Scholar
- 5.Regge, T., Teitelboim, C.: Ann. Phys.88, 286 (1974)Google Scholar
- 6.Ashtekar, A.: Phys. Rev. Lett.46, 573 (1981); In: Quantum gravity. Isham, C. J., Penrose, R., Sciama, D. W. (eds.). Oxford: Oxford Univ. Press 1981Google Scholar
- 7.Penrose, R.: Phys. Rev. Lett.10, 66 (1963); Proc. R. Soc. (London)A284, 159 (1965)Google Scholar
- 8.Sachs, R. K.: Phys. Rev.128, 2851 (1962)Google Scholar
- 9.Komar, A.: Phys. Rev.134, B1430 (1964)Google Scholar
- 10.Ashtekar, A., Streubel, M.: Proc. R. Soc. (London)A376, 585 (1981)Google Scholar
- 11.Ashtekar, A.: J. Math. Phys.22, 2885 (1981); Quantization of the radiative degrees of freedom of general relativity (preprint)Google Scholar
- 12.Buchholz D.: In: The proceedings of the 6th international conference on mathematical physics. New York: Springer 1981Google Scholar
- 13.Faddeev, L. D.: Theor. Math. Phys.1, 3 (1969)Google Scholar
- 14.Ashtekar, A., Geroch, R.: Rep. Prog. Phys.37, 1217–1219 and 1245–1247 (1974)Google Scholar
- 15.Fischer, A. E., Marsden, J. E.: In: General relativity. Hawking, S. W., Israel, W. (eds.), London: Cambridge Univ. Press 1978Google Scholar
- 16.Schmidt, B. G., Walker, M., Sommers, P.: Gen. Re. Grav.6, 489 (1975)Google Scholar
- 17.Geroch, R.: In: Asymptotic structure of space-time. Esposito, P., Witten, L., (eds.) New York: Plenum 1977Google Scholar
- 18.Friedman, J. L.: Commun. Math. Phys.62, 247 (1978)Google Scholar
- 19.Palmer, T. N.: J. Math. Phys.19, 2324 (1978)Google Scholar
- 20.Geroch, R., Xanthopoulos, B. C.: J. Math. Phys.19, 714 (1978)Google Scholar
- 21.Geroch, R., Horowitz, G. T.: Phys. Rev. Lett.40, 203 (1978)Google Scholar
- 22.Ashtekar, A.: In: General relativity and gravitation, one hundred years after the birth of Albert Einstein. Held, A. (ed.) New York: Plenum 1980Google Scholar
- 23.Porill, J., Steward, J. M.: Proc. R. Soc. (London)A376, 451, (1981)Google Scholar
- 24.Geroch, R.: J. Math. Phys.19, 1300 (1978)Google Scholar
- 25.Christodoulou, D.: The boost problem for weakly coupled quasilinear hyperbolic systems of second order. J. Math. Pure Appl. (to appear)Google Scholar
- 26.Choquet-Bruhat, Y., Christodoulou, D.: Elliptic systems in Hilbert spaces on manifolds which are euclidean at infinity. Acta Math. (to appear)Google Scholar
- 27.Christodoulou, D., O'Murchadha, N.: Commun. Math. Phys.80, 271 (1981)Google Scholar
- 28.Friedrich, H.: Proc. R. Soc. (London)A375, 169 (1981)Google Scholar
Copyright information
© Springer-Verlag 1982