Communications in Mathematical Physics

, Volume 110, Issue 4, pp 625–640

Global stability of a class of discontinuous dual billiards

  • Franco Vivaldi
  • Anna V. Shaidenko
Article

Abstract

An infinite-parameter family of discontinuous area-preserving maps is studied, using geometrical methods. Necessary and sufficient conditions are determined for the existence of some bounding invariant sets, which guarantee global stability. It is shown that under some additional constraints, all orbits become periodic, most of them Lyapounov stable, and with a maximal period in any bounded domain of phase space. This yields a class of maps acting on a discrete phase space.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moser, J.K.: Stable and random motions in dynamical systems. Princeton, NJ: Princeton University Press 1973Google Scholar
  2. 2.
    Siegel, C.L., Moser, J.K.: Lectures on celestial mechanics. Berlin, Heidelberg, New York: Springer 1971, p. 183Google Scholar
  3. 3.
    Moser, J.K.: Lectures on Hamiltonian systems. Mem. Am. Math. Soc.81, 1 (1968)Google Scholar
  4. 4.
    Henon, M., Wisdom, J.: The Benettin-Strelcyn oval billiard revisited. Physica8D, 157 (1983)Google Scholar
  5. 5.
    Devaney, R.L.: A piecewise linear model for the zones of instability of an area-preserving map. Physica10 D, 387 (1984)Google Scholar
  6. 6.
    Zemlyakov, A.N., Katok, B.: Mat. Zametki18, 291 (1975) [English transl.: Math. Notes18, 760 (1976)]Google Scholar
  7. 7.
    Richens, P., Berry, M.: Pseudointegrable systems in classical and quantum mechanics. Physica2 D, 495 (1981)Google Scholar
  8. 8.
    Eckardt, B., Ford, J., Vivaldi, F.: Analytically solvable dynamical systems which are not integrable. Physica13 D, 339 (1984)Google Scholar
  9. 9.
    Hammer, P.C.: Unsolved problems. Proc. Symp. Pure Math., Vol. VII. Am. Math. Soc. (1963)Google Scholar
  10. 10.
    Moser, J.K.: Is the solar system stable? Math. Intell.1, 2, 65 (1976)Google Scholar
  11. 11.
    Greene, J.M.: Two-dimensional measure-preserving maps. J. Math. Phys.9, 760 (1968)Google Scholar
  12. 12.
    Arnold, V.I.: Mathematical methods of classical mechanics. Moskow: Nauka 1974 [English transl.: Berlin, Heidelberg, New York: Springer 1968, p. 61]Google Scholar
  13. 13.
    Marcus, D.A.: Number fields, p. 18. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  14. 14.
    Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Paris: Gauthier-Villars 1892. NASA Translation TT-F450, Washington 1976. Art. 36Google Scholar
  15. 15.
    Ford, J.: How random is a coin toss? Physics Today36 (4), 40 (1983)Google Scholar
  16. 16.
    Rannou, F.: Numerical study of discrete plane area-preserving mappings. Astron. Astrophys.31, 289 (1974)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Franco Vivaldi
    • 1
  • Anna V. Shaidenko
    • 2
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondonEngland
  2. 2.Department of MathematicsNovosibirskUSSR

Personalised recommendations