Communications in Mathematical Physics

, Volume 90, Issue 2, pp 161–173 | Cite as

Supersymmetry and the Atiyah-Singer index theorem

  • Luis Alvarez-Gaumé


Using a recently introduced index for supersymmetric theories, we present a simple derivation of the Atiyah-Singer index theorem for classical complexes and itsG-index generalization using elementary properties of quantum mechanical supersymmetric systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, E.: Constraints on supersymmetry breaking. Nucl. Phys. B202, 253 (1982)Google Scholar
  2. 1a.
    Singer, I.M., McKean, H.P., Jr.: Curvature ε the eigenvalues of the Laplacian. J. Diff. Geom.1, 43–69 (1967)Google Scholar
  3. 2.
    Witten, E.: Supersymmetry and morse theory. J. Diff. Geom.17, 661 (1982)Google Scholar
  4. 3.
    Witten, E.: Holomorphic morse inequalities. Princeton Preprint 1982Google Scholar
  5. 4.
    Atiyah, M.F., Singer, I.M.: Index of elliptic operators. I. Ann. Math.87, 485 (1968)Google Scholar
  6. 4a.
    Atiyah, M.F., Segal, G.B.: Index of elliptic operators. II. Ann. Math.87, 531 (1968)Google Scholar
  7. 4b.
    Atiyah, M.F., Singer, I.M.: Index of elliptic operators. III. Ann. Math.87, 546 (1968)Google Scholar
  8. 4c.
    Atiyah, M.F., Singer, I.M.: Index of elliptic operators. IV. Ann. Math.93, 119 (1971)Google Scholar
  9. 4d.
    Atiyah, M.F., Singer, I.M.: Index of elliptic operators. V. Ann. Math.93, 139 (1971)Google Scholar
  10. 5.
    Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and the index theorem. Invent. Math.19, 279 (1973)Google Scholar
  11. 6.
    Gilkey, P.B.: The index theorem and the heat equation. Boston: Publish or Perish Inc. 1974Google Scholar
  12. 7.
    Cecotti, S., Girardello, L.: Functional measure, topology, and dynamical supersymmetry breaking. Phys. Lett.110B, 39 (1982)Google Scholar
  13. 8.
    di Vecchia, P., Ferrara, S.: Classical solutions in two dimensional supersymmetric field theories. Nucl. Phys. B130, 93 (1977)Google Scholar
  14. 8a.
    Witten, E.: Supersymmetric form of the non-linear σ-model in two dimensions. Phys. Rev. D16, 2991 (1977)Google Scholar
  15. 8b.
    Freedman, D.Z., Townsend, P.K.: Antisymmetric tensor gauge theories and non-linear σ-models. Nucl. Phys. B177, 282 (1981)Google Scholar
  16. 9.
    Witten, E.: An SU(2) anomaly. Phys. Lett. B117, 324 (1982)Google Scholar
  17. 10.
    Zumino, B.: Supersymmetry and Kähler manifolds. Phys. Lett. B87, 203 (1979)Google Scholar
  18. 11.
    Lichnerowicz, A.: Global theory of connections and the holonomy group. Leyden: Noordhoof 1976Google Scholar
  19. 12.
    Alvarez-Gaumé, L., Freedman, D.Z.: Potential terms in two dimensional extended supersymmetry. Harvard PreprintGoogle Scholar
  20. 13.
    Chern, S.S.: On the curvature integrals in a Riemannian manifold. Ann. Math.46, 674 (1942)Google Scholar
  21. 14.
    Alvarez-Gaumé, L., Freedman, D.Z., Mukhi, S.: The background field method in supersymmetric σ-models. Ann. Phys.134, 85 (1981)Google Scholar
  22. 15.
    Milnor, J.W., Stasheff, J.D.: Characteristic classes. Princeton, NJ: Princeton University Press 1974Google Scholar
  23. 16.
    Eguchi, T., Gilkey, P.B., Hanson, A.J.: Gravitation, gauge theories, and differential geometry. Phys. Rep. 213 (1980)Google Scholar
  24. 17.
    Atiyah, M.F., Bott, R.: A Lefshetz fixed point formula for elliptic differential operators. Bull. Am. Math. Soc.12, 245 (1966)Google Scholar
  25. 17a.
    Atiyah, M.F., Bott, R.: A Lefshetz fixed point formula for elliptic complexes. I, II. Ann. Math.86, 374 (1967);88, 451 (1968)Google Scholar
  26. 18.
    Haag, R., Lopuszanski, J., Sohnius, M.: All possible generators of supersymmetries of theS-matrix. Nucl. Phys. B88, 61 (1975)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Luis Alvarez-Gaumé
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA
  2. 2.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations