Journal of Neurocytology

, Volume 9, Issue 4, pp 537–570 | Cite as

Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse

  • Enrico Mugnaini
  • Kirsten K. Osen
  • Anne-Lise Dahl
  • Victor L. FriedrichJr
  • Gary Korte


This paper describes the fine structure of granule cells and granule-associated interneurons (termed Golgi cells) in the cochlear nuclei of cat, rat and mouse. Granule cells and Golgi cells are present in defined regions of ventral and dorsal cochlear nuclei collectively termed ‘cochlear granule cell domain’.

The granule cells are small neurons with two or three short dendrites that give rise to a few branches with terminal expansions. These participate in glomerular synaptic arrays similar to those of the cerebellar cortex. In the glomeruli the dendrites form short type 1 synapses with a large, centrally-located mossy bouton containing round synaptic vesicles and type 2 synapses with peripherally located, smaller boutons containing pleomorphic vesicles. The granule cell axon is thin and beaded and, on its way to the molecular layer of the DCN, takes a straight course, which in the ventral nucleus is parallel to the pial surface.

Neurons of the second category resemble cerebellar Golgi cells and occur everywhere interspersed among the granule cells. They are usually larger than the granule cells and give rise to dendrites which may branch close to and curve around the cell body. The dendrites contain numerous mitochondria and are laden with thin appendages, giving them a hairy appearance. Both the cell body and the stem dendrites participate in glomerular synaptic arrays. Golgi cell glomeruli are distinguishable from the granule cell glomeruli by unique features of the dendritic profiles and by longer, type 1 synaptic junctions with the central mossy bouton. The Golgi cell axon forms a beaded plexus close to the parent cell body.

The synaptic vesicle population of the mossy boutons suggests that they are a heterogeneous group and may have multiple origins. Apparently, each of the various classes participates in both granule and Golgi cell glomeruli. The smaller peripheral boutons with pleomorphic vesicles in the two types of glomeruli may represent Golgi cell axons which make synaptic contacts with both granule and Golgi cells. The Golgi cell dendrites, on the other hand, are also contacted by small boutonsen passant with round synaptic vesicles, which may represent granule cell axons. A tentative scheme of the circuitry in the cochlear granule cell domain is presented. The similarity with the cerebellar granule cell layer is striking.


Granule Cell Cochlear Nucleus Granule Cell Layer Golgi Cell Dorsal Cochlear Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. C. (1977) Organization of the margins of the anteroventral cochlear nucleus.Anatomical Record 187, 520 (abstract).Google Scholar
  2. Adams, J. C. (1979) Ascending projections to the inferior colliculus.Journal of Comparative Neurology 183, 519–38.Google Scholar
  3. Altman, J. &Das, G. (1966) Autoradiographic and histological studies of postnatal histogenesis. II. A longitudinal investigation of kinetics, migration and transformation of cells incorporating thymidine in infant rats with special reference to postnatal neurogenesis in some brain regions.Journal of Comparative Neurology 126, 337–90.Google Scholar
  4. Ariëns-Kappers, C. V. A., Huber, G. C. &Crosby, E. C. (1967, reprinted)The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Vol. 1, pp. 1–695. New York: Hafner.Google Scholar
  5. Bird, S. J., Gulley, R. L., Wenthold, R. J. &Fex, J. (1978) Kainic acid injections result in degeneration of cochlear nucleus cells innervated by the auditory nerve.Science 202, 1087–9.Google Scholar
  6. Brawer, J. R., Morest, D. K. &Kane, E. C. (1974) The neuronal architecture of the cochlear nucleus of the cat.Journal of Comparative Neurology 155, 251–300.Google Scholar
  7. Bruner, L. (1970)Electron microscopic studies of the cat cochlear nuclei. Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland.Google Scholar
  8. Chan-Palay, V. &Palay, S. L. (1971a) Tendril and glomerular collaterals of climbing fibres in the granular layer of the rat's cerebellar cortex.Zeitschrift für Anatomie und Entwicklungsgeschichte 133, 247–73.Google Scholar
  9. Chan-Palay, V. &Palay, S. L. (1971b) The synapseen marron between Golgi II neurons and mossy fibre in the rat's cerebellar cortex.Zeitschrift für Anatomie und Entwicklungsgeschichte 133, 274–89.Google Scholar
  10. Del Río-Hortega, P. (1928) Tercera aportación al conocimiento morfológico e interpretación funcional de la oligodendroglia.Memorias de la Real Sociedad Espanola de Historia Natural 14, 1–128.Google Scholar
  11. Eccles, J. C., Llinás, R. &Sasaki, K. (1966) The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells.Experimental Brain Research 1, 82–101.Google Scholar
  12. Eccles, J. C., Sasaki, K. &Strata, P. (1967a) A comparison of the inhibitory actions of Golgi cells and basket cells.Experimental Brain Research 3, 81–96.Google Scholar
  13. Eccles, J., Ito, M. &Szentágothai, J. (1967b)The Cerebellum as a Neuronal Machine, pp. 1–335. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  14. Fox, C. A., Hillman, D. E., Siegesmund, K. A. &Dutta, C. R. (1967) The primate cerebellar cortex: A Golgi and electron microscopic study.Progress in Brain Research 25, 174–225.Google Scholar
  15. Fuse, G. (1913) Das Ganglion ventrale und das Tuberculum acusticum bei einigen Säugern und beim Menschen.Arbeiten aus dem hirnanatomischen Institut in Zürich 7, 1–210.Google Scholar
  16. Fuse, G. (1920) Beitrag zur mikroskopischen Anatomie der primären Endigungsstätten des Nervus octavus, des Ganglion ventrale acustici und des Tuberculum acusticum, beim Stachelschwein.Arbeiten aus dem Anatomischen Institut der Kaiserlich-Japanischen Universität zu Sendai 5, 50–70.Google Scholar
  17. Golgi, C. (1903) Sulla fina anatomia del cervelletto umano. InOpera Omnia, Vol. I, pp. 99–111. Milano: Hoepli.Google Scholar
  18. Godfrey, D. A. (1971)Localization of single units in the cochlear nucleus of the cat: An attempt to correlate neuronal structure and function. Ph.D. thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  19. Godfrey, D. A., Kiang, N. Y. S. &Norris, B. E. (1975) Single unit activity in the dorsal cochlear nucleus of the cat.Journal of Comparative Neurology 162, 269–84.Google Scholar
  20. Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscopic study.Journal of Anatomy 93, 420–33.Google Scholar
  21. Hall, J. G. (1969) The cochlea and the cochlear nuclei in the bat.Acta Otolaryngologica 67, 490–500.Google Scholar
  22. Hámori, J. (1964) Identification in the cerebellar isles of Golgi II axon endings by aid of experimental degeneration. InElectron Microscopy 1964.Proceedings of the Third European Regional Conference (edited byTitlbach, M.), Vol. B, pp. 291–2. Prague: Czechoslovak Academy of Sciences.Google Scholar
  23. Hámori, J. &Szentágothai, J. (1966) Participation of Golgi neuron processes in the cerebellar glomeruli: An electron microscopic study.Experimental Brain Research 2, 35–48.Google Scholar
  24. Harrison, I. M. &Irving, R. (1965) The anterior ventral cochlear nucleus.Journal of Comparative Neurology 124, 15–42.Google Scholar
  25. Harrison, J. M. &Irving, R. (1966) The organization of the posterior ventral cochlear nucleus in the rat.Journal of Comparative Neurology 126, 391–402.Google Scholar
  26. Harrison, J. M. &Warr, W. B. (1962) A study of the cochlear nuclei and ascending auditory pathways of the medulla.Journal of Comparative Neurology 119, 341–79.Google Scholar
  27. Herndon, R. M., Margolis, G. &Kilham, L. (1971) The synaptic organization of the malformed cerebellum induced by perinatal injection with the feline panleukopenia virus (PLV) I. Elements forming the cerebellar glomeruli.Journal of Neuropathology and Experimental Neurology 30, 196–205.Google Scholar
  28. Hillman, D. E. (1969) Neuronal organization of the cerebellar cortex in amphibia and reptilia. InNeurobiology of Cerebellar Evolution and Development (edited byLlinás, R.), pp. 279–324. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  29. Kane, E. C. (1974a) Synaptic organization in the dorsal cochlear nucleus of the cat: A light and electron microscopic study.Journal of Comparative Neurology 155, 301–30.Google Scholar
  30. Kane, E. C. (1974b) Patterns of degeneration in the caudal cochlear nucleus of the cat.Anatomical Record 179, 67–92.Google Scholar
  31. Kane, E. C. (1976) Descending projections to specific regions of the cat cochlear nucleus: A light microscopic study.Experimental Neurology 52, 372–88.Google Scholar
  32. Kane, E. S. (1977) Descending inputs to the dorsal cochlear nucleus: An electron microscopic study.Journal of Neurocytology 6, 583–605.Google Scholar
  33. Kiang, N. Y. S., Godfrey, D. A., Norris, B. E. &Moxon, S. E. (1975) A block model of the cat cochlear nucleus.Journal of Comparative Neurology 102, 221–46.Google Scholar
  34. Larramendi, L. M. H. (1969) Analysis of synaptogenesis in the cerebellum of the mouse. InNeurobiology of Cerebellar Evolution and Development (edited byLlinás, R.), pp. 803–43. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  35. Llinás, R. &Hillman, D. E. (1969) Physiological and morphological organization of the cerebellar circuits in various vertebrates. InNeurobiology of Cerebellar Evolution and Development (edited byLlinás, R.), pp. 43–73. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  36. Lorente De Nó, R. (1933) Anatomy of the eighth nerve. III. General plan of structure of the primary cochlear nuclei.Laryngoscope 43, 327–50.Google Scholar
  37. Lorente De Nó, R. (1976) Some unresolved problems concerning the cochlear nerve.Annals of Otology, Rhinology and Laryngology 85, Suppl.34, 1–28.Google Scholar
  38. McDonald, D. M. &Rasmussen, G. L. (1971) Ultrastructural characteristics of synaptic endings in the cochlear nucleus having acetylcholinesterase activity.Brain Research 28, 1–18.Google Scholar
  39. Merzenich, M. M. (1970) Morphological specialization of the cochlear nuclear complex in certain mammals.Anatomical Record 166, 347 (abstract).Google Scholar
  40. Merzenich, M. M., Kitzes, L. &Aitkin, L. (1973) Anatomical and physiological evidence for auditory specialization in the mountain beaver (Aplodontia rufa). Brain Research58, 331–44.Google Scholar
  41. Moore, J. K. (1980) The primate cochlear nuclei: loss of lamination as a phylogenetic process.Journal of Comparative Neurology (in press).Google Scholar
  42. Moore, J. K. &Osen, K. K. (1979) The cochlear nuclei in man.American Journal of Anatomy 154, 393–418.Google Scholar
  43. Mugnaini, E. (1969) Ultrastructural studies on the cerebellar histogenesis. II. Maturation of nerve cell populations and establishment of synaptic connections in the cerebellar cortex of the chick. InNeurobiology of Cerebellar Evolution and Development (edited byLlinás, R.), pp. 749–82. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  44. Mugnaini, E. (1972) The histology and cytology of the cerebellar cortex. InThe Comparative Anatomy and Histology of the Cerebellum: The Human Cerebellum, Cerebellar Connections and Cerebellar Cortex (edited byLarsell, O. andJansen, J.), pp. 201–65. Minneapolis: University of Minnesota Press.Google Scholar
  45. Mugnaini, E., Atluri, R. L. &Houk, J. C. (1974) Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli.Journal of Neurophysiology 37, 1–29.Google Scholar
  46. Mugnaini, E., Warr, W. B. &Osen, K. K. (1980) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat and mouse.Journal of Comparative Neurology (in press).Google Scholar
  47. Osen, K. K. (1969) Cytoarchitecture of the cochlear nuclei in the cat.Journal of Comparative Neurology 136, 453–84.Google Scholar
  48. Osen, K. K. (1970) Course and termination of the primary afferents in the cochlear nuclei of the cat. An experimental anatomical study.Archives Italiennes de Biologie 108, 21–51.Google Scholar
  49. Osen, K. K. &Jansen, J. (1965) The cochlear nuclei in the common porpoise,Phocaena phocaena.Journal of Comparative Neurology 125, 223–58.Google Scholar
  50. Osen, K. K. &Roth, K. (1969) Histochemical localization of cholinesterases in the cochlear nuclei of the cat, with notes on the origin of acetylcholinesterase-positive afferents and the superior olive.Brain Research 16, 165–85.Google Scholar
  51. Palay, S. L. &Chan-Palay, V. (1974)Cerebellar Cortex, Cytology and Organization. pp. 1–348. New York, Heidelberg, Berlin: Springer-Verlag.Google Scholar
  52. Pierce, E. T. (1967) Histogenesis of the dorsal and ventral cochlear nuclei in the mouse. An autoradiographic study.Journal of Comparative Neurology 131, 27–54.Google Scholar
  53. Pirsig, W. (1968) Regionen, Zelltypen, und Synapsen im ventralen Nucleus cochlearis des Meerschweinchens.Archiv für Ohren-, Nasen- und Kehlkopfheil-kunde 192, 333–50.Google Scholar
  54. Precht, W. &Llinás, R. (1969) Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat.Experimental Brain Research 9, 30–52.Google Scholar
  55. Ramón y Cajal, S. (1955, reprinted)L'Histologie du Système Nerveux de l'Homme et des Vertébrés, (translated byAzoulay, L.) Vol. I, pp. 787–8. Madrid: Consejo superior de Investigaciones Cientificas Institute Ramón y Cajal.Google Scholar
  56. Rasmussen, G. L. (1967) Efferent connections of the cochlear nucleus. InSensorineural Hearing Processes and Disorders (edited byGraham, A. B.), pp. 61–75. Boston: Little-Brown.Google Scholar
  57. Romand, R. (1978) Survey of intracellular recording in the cochlear nucleus of the cat.Brain Research 148, 43–65.Google Scholar
  58. Ross, M. D. (1962) Auditory pathway of the epileptic waltzing mouse. I. A comparison of the acoustic pathways of the normal mouse with those of the totally deaf epileptic waltzer.Journal of Comparative Neurology 119, 317–39.Google Scholar
  59. Sobrino, J. A. &Gallego, A. (1972) Cytology of the granular layer of the bulbar cochlear nuclei.Journal of Comparative Neurology 145, 179–94.Google Scholar
  60. Sotelo, C. (1969) Ultrastructural aspects of the cerebellar cortex of the frog. InNeurobiology of Cerebellar Evolution and Development (edited byLlinás, R.), pp. 327–72. Chicago: AMA-ERF Institute for Biomedical Research.Google Scholar
  61. Sotelo, C. &Llinás, R. (1972) Specialized membrane junctions between neurons in the vertebrate cerebellar cortex.Journal of Cell Biology 53, 271–89.Google Scholar
  62. Valverde, F. (1970) The Golgi method. A tool for comparative structural analysis. InContemporary Research Methods in Neuroanatomy (edited byNauta, W. andEbbesson, S. O. E.), pp. 12–31. Berlin, Heidelberg, New York: Springer-Verlag.Google Scholar
  63. Van Gisbergen, J. A. M., Grashuis, J. L., Johannesma, P. I. M. &Vendrik, A. J. H. (1975) Spectral and temporal characteristics of activation and suppression of units in the cochlear nuclei of the anaesthetized cat.Experimental Brain Research 23, 367–86.Google Scholar
  64. Webster, D. B., Ackerman, R. F. &Longa, G. C. (1968) Central auditory system of the kangaroo rat,Dipodomys merriami.Journal of Comparative Neurology 133, 477–94.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1980

Authors and Affiliations

  • Enrico Mugnaini
    • 1
  • Kirsten K. Osen
    • 1
  • Anne-Lise Dahl
    • 1
  • Victor L. FriedrichJr
    • 1
  • Gary Korte
    • 1
  1. 1.Laboratory of Neuromorphology, Department of Biobehavioral SciencesUniversity of ConnecticutStorrsUSA

Personalised recommendations