, Volume 12, Issue 2, pp 227–235 | Cite as

Note on the existence of large minimal blocking sets in galois planes

  • Tamás Szőnyi


A subsetS of a finite projective plane of orderq is called a blocking set ifS meets every line but contains no line. For the size of an inclusion-minimal blocking setq+\(\sqrt q \)+≤∣S∣≤q\(\sqrt q \)+1 holds ([6]). Ifq is a square, then inPG(2,q) there are minimal blocking sets with cardinalityq\(\sqrt q \)+1. Ifq is not a square, then the various constructions known to the author yield minimal blocking sets with less than 3q points. In the present note we show that inPG(2,q),q≡1 (mod 4) there are minimal blocking sets having more thanqlog2q/2 points. The blocking sets constructed in this note contain the union ofk conics, wherek≤log2q/2. A slight modification of the construction works forq≡3 (mod 4) and gives the existence of minimal blocking sets of sizecqlog2q for some constantc.

As a by-product we construct minimal blocking sets of cardinalityq\(\sqrt q \)+1, i.e. unitals, in Galois planes of square order. Since these unitals can be obtained as the union of\(\sqrt q \) parabolas, they are not classical.

AMS subject classification code (1991)

51 E 21 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Berardi, andF. Eugeni: On the cardinality of blocking sets inPG(2,q),J. of Geometry22 (1984), 5–14.MathSciNetCrossRefGoogle Scholar
  2. [2]
    A. Blokhuis: On subsets ofGF(q2) with square differences,Nederl. Akad. Wetensch. Indag. Math.46 (1984), 369–372.MathSciNetCrossRefGoogle Scholar
  3. [3]
    B. Bollobás, andA. Thomasen: Graphs which contain all small graphs,Eur. J. Comb.2 (1981), 13–15.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. Boros:PG(2, ps),p>2 has propertyB(p+2), Ars Combinatoria25 (1988), 111–114.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. Bruen: Baer subplanes and blocking sets,Bull. Amer. Math. Soc.76 (1970), 342–344.MathSciNetCrossRefGoogle Scholar
  6. [6]
    A. Bruen, andJ. A. Thas: Blocking sets,Geom. Ded.6 (1977), 193–203.MathSciNetzbMATHGoogle Scholar
  7. [7]
    F. Buekenhout: Existence of unitals in finite translation planes of orderq2 with kernel of orderq, Geom. Ded.5 (1976), 189–194.CrossRefGoogle Scholar
  8. [8]
    P. J. Cameron: Four Lectures on Projective Geometries, in:Finite Geometries (ed.: C.A. Baker, L.M. Batten), Lecture Notes in Pure and Applied Math.103, M. Dekker, New York, 1985, 27–63.Google Scholar
  9. [9]
    F. R. Chung, R. L. Graham, andR. M. Wilson: Quasi-random graphs,Combinatorica9, (1989) 345–362.MathSciNetCrossRefGoogle Scholar
  10. [10]
    G. Faina, andG. Korchmáros: A graphic characterization of Hermitian curves,Ann. Discrete Math.18 (1983), 335–342.MathSciNetzbMATHGoogle Scholar
  11. [11]
    R. L. Graham, andJ. Spencer: A constructive solution to a tournament problem,Can. Math. Bull.14 (1971), 45–48.MathSciNetCrossRefGoogle Scholar
  12. [12]
    J. W. P. Hirschfeld:Projective geometries over finite fields, Clarendon Press, Oxford, 1976.zbMATHGoogle Scholar
  13. [13]
    J. W. P. Hirschfeld:Finite Projective Spaces of Three Dimensions, Clarendon Press, Oxford, 1985.zbMATHGoogle Scholar
  14. [14]
    C. Lefévre-Percsy: Characterization of Buekenhout-Metz unitals,Arch. Math.36 (1981), 565–568.MathSciNetCrossRefGoogle Scholar
  15. [15]
    C. Lefévre-Percsy: Characterization of Hermitian curves,Arch. Mathemat.39 (1982), 476–480.MathSciNetCrossRefGoogle Scholar
  16. [16]
    R. Lidl, andH. Niederreiter:Finite Fields, Enc. of Math 20, Addison-Wesley, Reading, 1983.zbMATHGoogle Scholar
  17. [17]
    L. Lovász:Combinatorial problems and exercises, Akadémiai Kiadó, North-Holland, 1979.zbMATHGoogle Scholar
  18. [18]
    R. Metz: On a class of unitals,Geom. Ded.8 (1979), 125–126.MathSciNetCrossRefGoogle Scholar
  19. [19]
    B. Segre: Proprieta elementari relative ai segmenti ed alle coniche sopra un campo qualsiasi ed una congettura di Seppo Ilkka per il caso dei campi di Galois,Annali di Mat. pura appl.96 (1973), 289–337.MathSciNetCrossRefGoogle Scholar
  20. [20]
    E. Ughi: On (k, n)-blocking sets which can be obtained as a union of conics,Geom. Ded.26 (1988), 241–245.MathSciNetCrossRefGoogle Scholar
  21. [21]
    H. Wilbrink: A characterization of classical unitals, in:Finite Geometries, Lecture Notes in Pure and Appl. Math.82, M. Dekker, New York, 1983, 445–454.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • Tamás Szőnyi
    • 1
  1. 1.Department of Computer ScienceEötvös Loránd University, BudapestBudapestHungary

Personalised recommendations