Advertisement

Combinatorica

, Volume 12, Issue 2, pp 221–226 | Cite as

A combinatorial approach to complexity

  • P. Pudlák
  • V. Rödl
Article

Abstract

We present a problem of construction of certain intersection graphs. If these graphs were explicitly constructed, we would have an explicit construction of Boolean functions of large complexity.

AMS Subject Classification code (1991)

68 R 10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Lovász: On the Shannon capacity of graphs,IEEE Transactions of Information theory,IT-25 (1979), 1–7.MathSciNetCrossRefGoogle Scholar
  2. [2]
    T. D. Parsons, andT. Pisanski: Vector representations of graphs, to appear inDiscrete Math. 78 (1989), 143–154.MathSciNetCrossRefGoogle Scholar
  3. [3]
    R. Paturi, andJ. Simon: Probabilistic communication complexity,25-th FOCS (1984), 118–126.Google Scholar
  4. [4]
    P. Pudlák, V. Rödl, andP. Savický: Graph complexity,Acta Informatica 25 (1988), 515–535.MathSciNetzbMATHGoogle Scholar
  5. [5]
    A. A. Razborov: Applications of matrix methods for the theory of lower bounds in computational complexity,Combinatorica 10 (1990), 81–93.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Reiterman, V. Rödl, andE. Šiňajová: Geometrical embeddings of graphs,Discrete Math. 74 (1989), 291–319.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. Reiterman, V. Rödl, andE. Šiňajová: Embeddings of graphs in euclidean spaces,Discrete Comput Geom. 4 (1989), 349–364.MathSciNetCrossRefGoogle Scholar
  8. [8]
    H. E. Warren: Lower bounds for approximations by nonlinear manifolds,Transactions AMS 133 (1968), 167–178.MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • P. Pudlák
    • 1
  • V. Rödl
    • 2
  1. 1.Mathematical InstituteČSAVPraha 1Czech Republic
  2. 2.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations