Advertisement

Combinatorica

, Volume 12, Issue 2, pp 149–153 | Cite as

The asymptotic behaviour of the number of three-connected triangulations of the disk, with a reflective symmetry in a line

  • D. M. Jackson
  • L. B. Richmond
Article
  • 38 Downloads

Abstract

We consider the enumeration of the three-connected triangulations of the disk, with a reflective symmetry about a line. The asymptotic behavior is unlike that observed for rooted maps or for maps having rotational symmetry.

AMS subject classification code (1991)

05 C 30 05 A 15 05 C 10 57 M 99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. A. Bender: Asymptotic methods in enumeration,SIAM Rev. 16 (1974), 485–515.MathSciNetCrossRefGoogle Scholar
  2. [2]
    E. A. Bender andE. R. Canfield: The asymptotic number of rooted maps on a surface,J. Combinatorial Theory (A)43 (1986), 244–257.MathSciNetCrossRefGoogle Scholar
  3. [3]
    E. A. Bender andE. R. Canfield: The asymptotic number of tree-rooted maps,J. Combinatorial Theory (A)48 (1988), 156–164.MathSciNetCrossRefGoogle Scholar
  4. [4]
    E. A. Bender andL. B. Richmond: A survey of the asymptotic behavior of maps, (preprint)Google Scholar
  5. [5]
    E. A. Bender andN. C. Wormald: The asymptotic number of rooted two-connected maps on a surface,J. Combinatorial Theory (A) (to appear).Google Scholar
  6. [6]
    W. G. Brown: Enumeration of triangulations of the disk,Proc. London Math. Soc. (3)14 (1964), 746–768.MathSciNetCrossRefGoogle Scholar
  7. [7]
    E. R. Canfield: Remarks on an asymptotic method in combinatorics,J. Combinatorial Theory (A)37 (1984), 348–352.MathSciNetCrossRefGoogle Scholar
  8. [8]
    Z. C. Gao: The number of rooted triangular maps on a surface,J. Combinatorial Theory (B) (to appear).Google Scholar
  9. [9]
    E. Hille: “Analytic Function Theory”, Vol. II, Ginn and Company, 1962.Google Scholar
  10. [10]
    F. W. J. Olver: “Asymptotics and Special Functions” Academic Press, New York, 1974zbMATHGoogle Scholar
  11. [11]
    W. T. Tutte: A census of planar triangulations,Canad. J. Math. 15 (1962), 21–38.MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • D. M. Jackson
    • 1
  • L. B. Richmond
    • 2
  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations