Advertisement

Combinatorica

, Volume 12, Issue 2, pp 143–147 | Cite as

Characterization of complete exterior sets of conics

  • A. Blokhuis
  • Á Seress
  • H. A. Wilbrink
Article

Abstract

Let ε be a set of\(\frac{{q + 1}}{2}\) exterior points of a nondegenerate conic inPG(2,q) with the property that the line joining any 2 points in ε misses the conic. Ifq≡1 (mod 4) then ε consists of the exterior points on a passant, ifq≡3 (mod 4) then other examples exist (at least forq=7, 11, ..., 31).

AMS subject classification code (1991)

05 B 25 51 E 15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Blokhuis, Á. Seress, andH.A. Wilbrink: On sets of points without tangents.Mitt. Math. Sem. Giessen 201 (1991), 39–44.MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. A. Bruen: Inversive Geometry and some New Planes,Geom. Dedicata 7 (1978), 81–98.MathSciNetzbMATHGoogle Scholar
  3. [3]
    A. A. Bruen, andB. Levinger: A theorem on permutations of a finite field,Canadian Journal of Mathematics 25 (1973), 1060–1065.MathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Carlitz: A theorem on permutations in a finite field,Proc. American Mathematical Society 11 (1960), 456–459.MathSciNetCrossRefGoogle Scholar
  5. [5]
    G. Korchmáros: Example of a chain of circles on an Elliptic Quadric ofPG(3, q), q=7,11Journal of Comb. Theory, A31 (1981), 98–100.CrossRefGoogle Scholar
  6. [6]
    R. McConnel: Pseudo-ordered polynomials over a finite field,Acta Arithmetica 8 (1963), 127–151.MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • A. Blokhuis
    • 1
  • Á Seress
    • 2
    • 3
  • H. A. Wilbrink
    • 1
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyDen Dolech 2The Netherlands
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesBudapestHungary
  3. 3.The Ohio State UniversityColumbusUSA

Personalised recommendations