Combinatorica

, Volume 12, Issue 2, pp 125–134

Colorings and orientations of graphs

  • N. Alon
  • M. Tarsi
Article

Abstract

Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: IfG is a directed graph with maximum outdegreed, and if the number of Eulerian subgraphs ofG with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any assignment of a setS(v) ofd+1 colors for each vertexv ofG there is a legal vertex-coloring ofG assigning to each vertexv a color fromS(v).

AMS Subject Classification codes (1991)

05 C 15 05 C 20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, S. Friedland, andG. Kalai: Regular subgraphs of almost regular graphs,J. Combinatorial Theory, Ser. B37 (1984), 79–91.Google Scholar
  2. [2]
    N. Alon, C. McDiarmid, andB. Reed: Star Arboricity, to appear.Google Scholar
  3. [3]
    N. Alon, andM. Tarsi: A nowhere zero point in linear mappings,Combinatorica 9 (1989), 393–395.Google Scholar
  4. [4]
    J. A. Bondy, R. Boppana, andA. Siegel: Private communication.Google Scholar
  5. [5]
    C. Berge:Graphs and Hypergraphs, Dunod, Paris, 1970.Google Scholar
  6. [6]
    B. Bollobás:Extremal Graph Theory, Academic Press, New York, 1978.Google Scholar
  7. [7]
    A. Chetwynd, andR. Häggkvist: A note on list colorings,J. Graph Theory 13 (1989), 87–95.Google Scholar
  8. [8]
    P. Erdős: Some old and new problems in various branches of combinatorics,Congressus Numerantium 23 (1979), 19–37.Google Scholar
  9. [9]
    P. Erdős, A. Rubin, andH. Taylor: Choosability in graphs,Congressus Numerantium 26 (1979), 125–157.Google Scholar
  10. [10]
    I. Gessel: Tournaments and Vandermonde's determinant,J. Graph Theory 3 (1979), 305–307.Google Scholar
  11. [11]
    R. L. Graham, S.-Y. R. Li, andW.-C. W. Li: On the structure oft-designs,SIAM J. Alg. Disc. Meth. 1 (1980), 8–14.Google Scholar
  12. [12]
    S.-Y. R. Li, andW.-C. W. Li: Independence numbers of graphs and generators of ideals,Combinatorical 1 (1981), 55–61.Google Scholar
  13. [13]
    R. P. Stanley: Acyclic orientations of graphs,Discrete Math. 5 (1973), 171–178.Google Scholar
  14. [14]
    M. Tarsi: On the decomposition of a graph into stars,Discrete Math. 36 (1981), 299–304.Google Scholar
  15. [15]
    V. G. Vizing: Coloring the vertices of a graph in prescribed colors (in Russian),Diskret. Analiz. 29,Metody Discret. Anal. v. Teorii Kodov i Shem 101 (1976), 3–10.Google Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • N. Alon
    • 1
  • M. Tarsi
    • 2
  1. 1.Department of Pure Mathematics School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer Science School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations