Advertisement

Combinatorica

, Volume 12, Issue 2, pp 125–134 | Cite as

Colorings and orientations of graphs

  • N. Alon
  • M. Tarsi
Article

Abstract

Bounds for the chromatic number and for some related parameters of a graph are obtained by applying algebraic techniques. In particular, the following result is proved: IfG is a directed graph with maximum outdegreed, and if the number of Eulerian subgraphs ofG with an even number of edges differs from the number of Eulerian subgraphs with an odd number of edges then for any assignment of a setS(v) ofd+1 colors for each vertexv ofG there is a legal vertex-coloring ofG assigning to each vertexv a color fromS(v).

AMS Subject Classification codes (1991)

05 C 15 05 C 20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Alon, S. Friedland, andG. Kalai: Regular subgraphs of almost regular graphs,J. Combinatorial Theory, Ser. B37 (1984), 79–91.MathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Alon, C. McDiarmid, andB. Reed: Star Arboricity, to appear.Google Scholar
  3. [3]
    N. Alon, andM. Tarsi: A nowhere zero point in linear mappings,Combinatorica 9 (1989), 393–395.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. A. Bondy, R. Boppana, andA. Siegel: Private communication.Google Scholar
  5. [5]
    C. Berge:Graphs and Hypergraphs, Dunod, Paris, 1970.zbMATHGoogle Scholar
  6. [6]
    B. Bollobás:Extremal Graph Theory, Academic Press, New York, 1978.zbMATHGoogle Scholar
  7. [7]
    A. Chetwynd, andR. Häggkvist: A note on list colorings,J. Graph Theory 13 (1989), 87–95.MathSciNetCrossRefGoogle Scholar
  8. [8]
    P. Erdős: Some old and new problems in various branches of combinatorics,Congressus Numerantium 23 (1979), 19–37.MathSciNetzbMATHGoogle Scholar
  9. [9]
    P. Erdős, A. Rubin, andH. Taylor: Choosability in graphs,Congressus Numerantium 26 (1979), 125–157.zbMATHGoogle Scholar
  10. [10]
    I. Gessel: Tournaments and Vandermonde's determinant,J. Graph Theory 3 (1979), 305–307.MathSciNetCrossRefGoogle Scholar
  11. [11]
    R. L. Graham, S.-Y. R. Li, andW.-C. W. Li: On the structure oft-designs,SIAM J. Alg. Disc. Meth. 1 (1980), 8–14.CrossRefGoogle Scholar
  12. [12]
    S.-Y. R. Li, andW.-C. W. Li: Independence numbers of graphs and generators of ideals,Combinatorical 1 (1981), 55–61.MathSciNetCrossRefGoogle Scholar
  13. [13]
    R. P. Stanley: Acyclic orientations of graphs,Discrete Math. 5 (1973), 171–178.MathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Tarsi: On the decomposition of a graph into stars,Discrete Math. 36 (1981), 299–304.MathSciNetCrossRefGoogle Scholar
  15. [15]
    V. G. Vizing: Coloring the vertices of a graph in prescribed colors (in Russian),Diskret. Analiz. 29,Metody Discret. Anal. v. Teorii Kodov i Shem 101 (1976), 3–10.MathSciNetGoogle Scholar

Copyright information

© Akadémiai Kiadó 1992

Authors and Affiliations

  • N. Alon
    • 1
  • M. Tarsi
    • 2
  1. 1.Department of Pure Mathematics School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.Department of Computer Science School of Mathematical Sciences Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations