Applied Mathematics and Optimization

, Volume 33, Issue 3, pp 253–264 | Cite as

A compact perturbation method for the boundary stabilization of the Rayleigh beam equation



We prove that the Rayleigh beam equation can be uniformly exponentially stabilized by only one control moment. We also prove the strong asymptotic stabilization and the lack of uniform exponential stabilization in the case of only one control force.

Key words

Boundary stabilization Compact perturbation Lack of uniform stabilization Uniform decay rate of energy 

AMS classification

Primary 93D15 Secondary 58G18 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Benchimol, A note on weak stabilizability of contraction semigroups, SIAM J. Control Optim., 16 (1987), 373–379.Google Scholar
  2. 2.
    H. Brezis, Analyse Fonctionelle, Théorie et Applications, Masson, Paris, 1992.Google Scholar
  3. 3.
    G. Chen, M. C. Delfour, A. M. Krall, G. Payre, Modeling, stabilization and control of serially connected beams, SIAM J. Control Optim. 25(3) (1987), 526–546.Google Scholar
  4. 4.
    G. Chen, S. G. Krantz, D. W. Ma, C. E. Wayre, H. H. West, The Euler-Bernoulli beam equation with boundary energy dissipation, in Operator Methods for Optimal Control Problems, S. J. Lee, ed., Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1987, pp. 67–96.Google Scholar
  5. 5.
    S. R. Foguel, Powers of a contraction in Hilbert space, Pacific J. Math., 13 (1963), 551–561.Google Scholar
  6. 6.
    J. S. Gibson, A note on stabilization of infinite-dimensional linear oscillators by compact linear feedback, SIAM J. Control Optim. 18 (1980), 311–316.Google Scholar
  7. 7.
    V. Komornik, B. P. Rao, Boundary stabilization of compactly coupled wave equations, C. R. Acad. Sci. Paris Ser. I, 320 (1995), 833–838.Google Scholar
  8. 8.
    J. E. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, PA, 1989.Google Scholar
  9. 9.
    M. Najafi, G. R. Sarhangi, H. Wang, The study of the stabilizability of the coupled wave equations under various end conditions, Proc. 31st IEEE Conference on Decision and Control, Tucson, AZ, 1992.Google Scholar
  10. 10.
    B. P. Rao, Stabilisation uniforme d'un système hybride en élasticité, C. R. Acad. Sci. Paris Ser. I, 316 (1993), 261–266.Google Scholar
  11. 11.
    B. P. Rao, Recent progresses in non-uniform and uniform stabilization of the SCOLE model by boundary feedbacks, IFIP “Boundary Control and Boundary Variation,” Sophia-Antipolis. Lecture Notes in Pure and Applied Mathematics, vol. 163, J-P. Zolésio, éd., Marcel Dekker, New York, 1994, pp. 357–365.Google Scholar
  12. 12.
    B. P. Rao, Uniform stabilization of a hybrid system of elasticity, SIAM J. Control Optim. 33 (1995), 440–454.Google Scholar
  13. 13.
    D. L. Russell, Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods, J. Differential Equations, 19 (1975), 344–370.Google Scholar
  14. 14.
    D. L. Russell, On the mathematical models for the elastic beam with frequence-proportional damping, in Control and Estimation in Distributed Parameters Systems, H. T. Bank, ed., Frontiers in Applied Mathematics, Philadelphia, PA, 1992, pp. 125–169.Google Scholar
  15. 15.
    D. L. Russell, B. Y. Zhang, Controllability and stabilizability of the third-order linear dispersion equation on a periodic domain, SIAM J. Control Optim., 31(3) (1992), 659–676.Google Scholar
  16. 16.
    B. Sz. -Nagy, C. Foias, Analyse Harmonique des Opérateurs de l'Espace de Hilbert, Masson, Paris, 1967.Google Scholar
  17. 17.
    R. Triggiani, Lack of uniform stabilization for noncontraetive semigroups under compact perturbation, Proc. Amer. Math. Soc., 105 (1989), 375–383.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1996

Authors and Affiliations

  • B. Rao
    • 1
  1. 1.Département de MathématiquesUniversité de Nancy I, U. R. A. CNRS 750, Projet Numath, INRIA LorraineVandœuvre-lès-NancyFrance

Personalised recommendations