Constructive Approximation

, Volume 9, Issue 4, pp 525–542 | Cite as

General interpolation schemes for the generation of irregular surfaces

  • Serge Dubuc
  • Fahima Nekka


We introduce an interpolation scheme to generate a class of irregular surfaces. The analysis is first carried out for a triangleT. We define the function ϕ on a subsetX, dense inT. In terms of the construction parameters of ϕ, we establish sufficient conditions for its uniform continuity so that it would be possible to extend it to a continuous function on the whole ofT. We do the same analysis in the case of a rectangleR.

AMS classification

41A05 65D05 

Key words and phrases

Triangulation Interpolation Irregular surfaces 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Deslauriers, J. Dubois, S. Dubuc (1991):Multidimensional iterative interpolation. Canad. J. Math.,43(2):297–312.Google Scholar
  2. 2.
    S. Dubuc, F. Nekka (1991):One-dimensional fractal functions, measures and distributions. In: Fractals in the Fundamental and Applied Sciences (H.-O. Peitgen, J. M. Henriques, L. F. Penedo, eds.). Amsterdam: Elsevier, pp. 111–121.Google Scholar
  3. 3.
    J. Feder (1988): Fractals. New York: Plenum Press.Google Scholar
  4. 4.
    A. Fournier, D. Fussel, L. Carpenter (1982):Computer rendering of stochastic models. Comm. ACM,25:371–384.Google Scholar
  5. 5.
    Z. Semadeni (1982): Schauder Basis in Banach Spaces of Continuous Functions. Berlin: Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1993

Authors and Affiliations

  • Serge Dubuc
    • 1
  • Fahima Nekka
    • 1
  1. 1.Département de Mathématiques et de StatistiqueUniversité de MontréalMontréalCanada

Personalised recommendations