Advertisement

Marine Geophysical Researches

, Volume 16, Issue 5, pp 385–406 | Cite as

Volcanism and archipelagic aprons in the Marquesas and Hawaiian Islands

  • P. E. Filmer
  • M. K. McNutt
  • H. F. Webb
  • D. J. Dixon
Article

Abstract

Geophysical observations demonstrate that the archipelagic apron surrounding the Marquesan hot-spot volcanoes is derived almost entirely from mass wasting processes. Seismic reflection and refraction data constrain the volume of the apron sediments to approximately 200,000 km3, with thicknesses reaching over 2 km in the deep portions of the moat near the edge of the volcanic edifice. Seismic velocities average 4 to 5 km s−1 in the sediments, and 6 km s−1 at the top of the underlying basement. Single channel seismic profiles show acoustically chaotic cores in the sediments of the apron, which are interpreted as debris flows from mass wasting events. We deduce that the apron is formed by catastrophic collapses that may involve volumes over 100 km3 tens to hundreds of times during the lifetime of a volcano. Comparison with similar data from the Hawaiian Islands yields the result that the total volume of volcanics and their derived sediments along the strike of the chains is only slightly smaller for the Marquesas, implying comparable eruption rates. However, the ratio of sediment to surface volcanic load is much larger for the latter, leading to an overfilled moat in the Marquesas and an underfilled moat at Hawaii. The much larger size of the Hawaiian islands can be explained as the combined effects of a higher thermal swell, loading a stiffer elastic plate, and proportionately less mass wasting.

Key words

Marquesas Hawaii mass wasting archipelagic aprons landslides island volcanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barron, E. J. and Whitman, J. M., 1981, Ocean Sediments in Space and Time, in C. Emiliani (ed.):The Sea, 7, 689–733. New York, Wiley Interscience.Google Scholar
  2. Brousse, R., Barsczus, H. G., Bellon, H., Cantagrel, J.-M., Diraison, C., Guillou, H., and Léotot, C., 1990, Les Marquises (Polynésie francaise): Volcanologie, Géochronologie, Discussion d'un Modèle de Point Chaud,Bull. Soc. Géol. France 8, 933–949.Google Scholar
  3. Calmant, S., 1987, The Elastic Thickness of the Lithosphere in the Pacific Ocean,Earth Planet. Sci. Lett. 85, 277–288.Google Scholar
  4. Calmant, S. and Cazenave, A., 1987, Anomalous Elastic Thickness of the Oceanic Lithosphere in the South-Central Pacific,Nature 328, 236–238.Google Scholar
  5. Caress, D. W., Mutter, J. C., McNutt, M. K., and Detrick, R. S., 1991, A Combined Multi-Channel Seismic Reflection and Seismic Refraction Profile through the Marquesas Island Chain (abstract),EOS, Trans. Amer. Geophys. Union 72438.Google Scholar
  6. Caress, D. W., Mutter, J. C., McNutt, M. K., and Detrick, R. S., 1992, An OBS Seismic Refraction Experiment across the Marquesas Islands: the Deep Crustal Structure of a Hot Spot Trace (abstract),EOS, Trans. Amer. Geophys. Union 73, 489–490.Google Scholar
  7. Cazenave, A., Dominh, K., Rabinowicz, M., and Ceuleneer, G., 1988, Geoid and Depth Anomalies over Ocean Swells and Troughs: Evidence for an Increasing Trend of the Geoid-to-Depth Ratio with Age of Plate,J. Geophys. Res. 93, 8064–8077.Google Scholar
  8. Desonie, D. L., Duncan, R. A., Nielsen, R. N., and Natland, J. H., 1993, Temporal and Geochemical Variability of Volcanic Products of the Marquesas Hotspot,J. Geophys. Res. (submitted).Google Scholar
  9. Detrick, R. S. and Crough, S. T., 1978, Island Subsidence, Hot Spots, and Lithospheric Thinning,J. Geophys. Res. 83, 1236–1244.Google Scholar
  10. Dietz, R. S., Menard, H. W., and Hamilton, E. L., 1954, Echograms of the Mid-Pacific Expedition,Deep-Sea Research 1 258–272.Google Scholar
  11. Duncan, R. H. and McDougall, I., 1974, Migration of Volcanism with Time in the Marquesas Islands, French Polynesia,Earth Planet. Sci. Lett. 21, 414–420.Google Scholar
  12. Filmer, P. E., 1991, Flexure of the Oceanic Lithosphere in the Vicinity of the Marquesas Islands, Ph. D. thesis, 252 pp., Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  13. Filmer, P. E., McNutt, M. K., and Wolfe, C. J., 1993, Elastic Thickness of the Lithosphere in the Marquesas and Society Islands,J. Geophys. Res., in press.Google Scholar
  14. Fischer, K. M., McNutt, M. K., and Shure, L., 1986, Thermal and Mechanical Constraints on the Lithosphere beneath the Marquesas Swell,Nature 322, 733–736.Google Scholar
  15. Fornari, D. J., Moore, J. G., and Calk, L., 1979, A Large Submarine Sand-Rubble Flow on Kilauea Volcano, Hawaii,J. Volcanol. Geotherm. Res. 5, 239–256.Google Scholar
  16. Frey, F. A., Wise, W. S., Garcia, M. O., West, H., Kwon, S.-T., and Kennedy, A., 1990, Evolution of Mauna Kea Volcano Hawaii: Petrologic and Geochemical Constraints on Postshield Volcanism,J. Geophys. Res. 95, 1271–1300.Google Scholar
  17. Kruse, S. E., 1988, Magnetic Lineations on the Flanks of the Marquesas Swell: Implications for the Age of the Seafloor,Geophys. Res. Lett. 15 573–576.Google Scholar
  18. Luetgert, J. H., 1992, MacRay, Interactive Two-Dimensional Seismic Raytracing for the MacIntosh, USGS Open File Report 92–356.Google Scholar
  19. Malahoff, A., 1987, Geology of the Summit of Loihi Submarine Volcano, inVolcanism in Hawaii, U. S. Geol. Surv. Prof. Pap. 1350(1, 133–144.Google Scholar
  20. McNutt, M. and Shure, L., 1986, Estimating the Compensation Depth of the Hawaiian Swell with Linear Filters,J. Geophys. Res. 91, 13915–13923.Google Scholar
  21. Menard, H. W., 1956, Archipelagic Aprons,Bull. Amer. Assoc. Petrol. Geol. 40, 2195–2210.Google Scholar
  22. Menard, H. W. and Dietz, R. S., 1951, Submarine Geology of the Gulf of Alaska,Bull. Geol. Soc. Am. 62, 1263–1285.Google Scholar
  23. Moore, J. G., Clague, D. A., Holcomb, R. T., Lipman, P. W., Normark, W. R., and Torresan, M. E., 1989, Prodigious Submarine Landslides on the Hawaiian Ridge,J. Geophys. Res. 94, 17465–17484.Google Scholar
  24. Natland, J. H. and McNutt, M. K., 1987, Submarine Stages of Marquesan Volcanism (abstract),EOS, Trans. Amer. Geophys. Union 68, 1451.Google Scholar
  25. Rees, B. A., Detrick, R. S., and Coakley, B., 1993, Seismic Stratigraphy of the Hawaiian Flexural Moat,Geol. Soc. Am. Bull. 105, 189–205.Google Scholar
  26. Shaw, H. R., Jackson, E. D., and Bargar, K. E., 1980, Volcanic Periodicity along the Hawaiian-Emperor Chain,Amer. J. Sci. 280-A, 667–708.Google Scholar
  27. Swanson, D. A., 1972, Magma Supply Rate of Kilauea Volcano, 1952–1971,Science,1975, 169–170.Google Scholar
  28. Talandier, J. and Okal, E. A., 1987, Crustal Structure in the Society and Tuamotu Islands, French Polynesia,Geophys. J. R. Astr. Soc. 88, 499–528.Google Scholar
  29. Vening Meinesz, F. A., 1948,Gravity Expeditions at Sea, vol. IV Netherlands Geod. Comm., Delft.Google Scholar
  30. Watson, S. and McKenzie, D., 1991, Melt Generation by Plumes: a Study of Hawaiian Volcanism,J. Petrology 32, 501–537.Google Scholar
  31. Watts, A. B. and Cochran, J. R., 1974, Gravity Anomalies and Flexure of the Lithosphere along the Hawaiian-Emperor Seamount Chain,Geophys. J. R. Astr. Soc. 38, 119–141.Google Scholar
  32. Watts, A. B. and ten Brink, U. S., 1989, Crustal Structure, Flexure, and Subsidence History of the Hawaiian Islands,J. Geophys. Res. 94, 10473–10500.Google Scholar
  33. Watts, A. B., ten Brink, U. S., Buhl, P., and Brocher, T. M., 1985, A Multichannel Seismic Study of Lithospheric Flexure across the Hawaiian-Emperor Seamount Chain,Nature 315 105–111.Google Scholar
  34. Wolfe, C. J., McNutt, M. K., and Detrick, R. S., 1993, The Marquesas Archipelagic Apron: Seismic Stratigraphy and Implications for Volcano Growth, Mass Wasting, and Crustal Underplating,J. Geophys. Res., submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • P. E. Filmer
    • 1
  • M. K. McNutt
    • 1
  • H. F. Webb
    • 1
  • D. J. Dixon
    • 2
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Colorado CollegeColorado SpringsUSA

Personalised recommendations