Journal of Materials Science

, Volume 17, Issue 11, pp 3149–3157 | Cite as

Thermal fatigue life of ceramics under mechanical load

  • N. Kamiya
  • O. Kamigaito


Thermal fatigue life of ceramics under mechanical load was studied using a soda-lime-silica glass rod. The life was also calculated by the application of fracture mechanics of ceramics based on slow crack growth. Both results agreed well. For instance, the following formulae hold well for the fatigue life of the ceramics under mechanical stress:
$$\begin{gathered} ln ( - ln P)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ \doteq } \frac{m}{n}ln N + \frac{{lm}}{n}ln \sigma _{M O} + \frac{{(n - l)m}}{n}ln (\Delta T) + C' \hfill \\ \frac{l}{{(n - l)}} \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{ \doteq } \frac{{\sigma _{M O} }}{{\sigma _{T O} }} \hfill \\ \end{gathered} $$
whereP,N,σTO,σMO, δT,m,n/C′ are survival probability, thermal stressing cycles (thermal fatigue life), the maximum thermal stress, mechanical stress, thermal shock severity, Weibull modulus, a material constant and constants, respectively. By the application of the second formula, the thermal stress induced on the glass rod in plunging the rod into water from hot atmosphere was estimated. The estimated value (11.2 kg mm−2 for a glass rod of 4mm diameter and δT=180° C) is thought to agree rather well with that estimated from the well-known formula derived from heat diffusion theory (9.7 ~ 15.8 kg mm−2) considering the accuracy of the approximation.


Fatigue Thermal Stress Fatigue Life Mechanical Stress Survival Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Kamiya andO. Kamigaito,J. Mater. Sci. 13 (1978) 212.Google Scholar
  2. 2.
    Idem, ibid. 14 (1979) 573.Google Scholar
  3. 3.
    R. W. Davidge andG. Tappin,Trans. Brit. Ceram. Soc. 66 (1967) 405.Google Scholar
  4. 4.
    D. P. H. Hasselman, R. Badaliance, K. R. McKinney andC. H. Kim,J. Mater. Sci. 11 (1976) 458.Google Scholar
  5. 5.
    S. M. Wiederhorn andL. H. Borz,J. Amer. Ceram. Soc. 53 (1970) 543.Google Scholar
  6. 6.
    A. G. Evans, “Fracture Mechanics of Ceramics 1” (Plenum Press, New York, 1976) p. 17.Google Scholar
  7. 7.
    P. C. Paris andG. C. Sih,ASTM SPECIAL Tech. Publ. No. 381 (1965).Google Scholar
  8. 8.
    G. K. Bansal andW. H. Duckworth, “Fracture Mechanics of Ceramics 3” (Plenum Press, New York, 1978) p. 189.Google Scholar
  9. 9.
    N. Kamiya andO. Kamigaito,J. Mater. Sci. 16 (1981) 828.Google Scholar
  10. 10.
    W. D. Kingery, H. K. Bowen andD. R. Uhlmann, “Introduction to Ceramics” 1st edn (John Wiley and Sons, New York, 1967) p. 632.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1982

Authors and Affiliations

  • N. Kamiya
    • 1
  • O. Kamigaito
    • 1
  1. 1.Toyota Central Research and Development LaboratoriesAichi-kenJapan

Personalised recommendations