Integral Equations and Operator Theory

, Volume 39, Issue 4, pp 387–395

Approximation of approximation numbers by truncation

  • A. Böttcher
  • A. V. Chithra
  • M. N. N. Namboodiri


LetA be a bounded linear operator onsome infinite-dimensional separable Hilbert spaceH and letAn be the orthogonal compression ofA to the span of the firstn elements of an orthonormal basis ofH. We show that, for eachk≥1, the approximation numberssk(An) converge to the corresponding approximation numbersk(A) asn→∞. This observation implies almost at once some well known results on the spectral approximation of bounded selfadjoint operators. For example, it allows us to identify the limits of all upper and lower eigenvalues ofAn in the case whereA is selfadjoint. These limits give us all points of the spectrum of a selfadjoint operator which lie outside the convex hull of the essential spectrum. Moreover, it follows that the spectrum of a selfadjoint operatorA with a connected essential spectrum can be completely recovered from the eigenvalues ofAn asn goes to infinity.

MSC 2000

Primary 47 A 58 Secondary 15 A 18 47 A 75 47 B 06 47 B 35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Arveson:C *-algebras in numerical linear algebra.J. Funct. Analysis 122 (1994), 333–360.Google Scholar
  2. [2]
    A. Böttcher: On the approximation numbers of large Toeplitz matrices.Documenta Mathematica 2 (1997), 1–29.Google Scholar
  3. [3]
    A. Böttcher and S.M. Grudsky:Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Hindustan Book Agency, New Delhi and Birkhäuser Verlag, Basel 2000.Google Scholar
  4. [4]
    A. Böttcher and B. Silbermann:Analysis of Toeplitz Operators: Springer-Verlag, Berlin 1990.Google Scholar
  5. [5]
    A. Böttcher and B. Silbermann:Introduction to Large Truncated Toeplitz Matrices. Springer-Verlag, New York 1999.Google Scholar
  6. [6]
    F. Chatelin:Spectral Approximation of Linear Operators. Academic Press, New York and London 1983.Google Scholar
  7. [7]
    E.B. Davies:Spectral Theory and Differential Operators. Cambridge University Press, Cambridge 1995.Google Scholar
  8. [8]
    W.M. Greenlee:Approximation of Eigenvalues by Variational Methods. Rijksuniversiteit Utrecht, Mathematical Institute, Utrecht 1979.Google Scholar
  9. [9]
    W.M. Greenlee: A convergent variational method of eigenvalue approximation.Arch. Rational Mach. Anal. 81 (1983), 279–287.Google Scholar
  10. [10]
    I. Gohberg, S. Goldberg, and M.A. Kaashoek:Classes of Linear Operators. Vol. I. Birkhäuser Verlag, Basel 1990.Google Scholar
  11. [11]
    I. Gohberg and M.G. Krein: The fundamentals on defect numbers, root numbers, and indices of linear operators.Uspehi Matem. Nauk 12 (1957), 43–118 [Russian]; Engl. transl.:Amer. Math. Soc. Transl. (2)13 (1960), 185–264.Google Scholar
  12. [12]
    I. Gohberg and M.G. Krein:Introduction to the Theory of Nonselfadjoint Operators in Hilbert Space. Nauka, Moscow 1965 [Russian]; Engl. transl.: Amer. Math. Soc. Transl. of Math. Monographs, Vol.18, Providence, RI, 1969.Google Scholar
  13. [13]
    J.E. Osborn: Spectral approximation for compact operators.Math. Comput. 29 (1975), 712–725.Google Scholar
  14. [14]
    G. Stolz and J. Weidmann: Approximation of isolated eigenvalues of ordinary differential operators.J. Reine Angew. Math. 445 (1993), 31–44.Google Scholar
  15. [15]
    G. Stolz and J. Weidmann: Approximation of isolated eigenvalues of general singular ordinary differential operators.Results Math. 28 (1995), 345–358.Google Scholar
  16. [16]
    P. Zizler, K.F. Taylor, and S. Arimoto: The Courant-Fisher theorem and the spectrum of selfadjoint block band Toeplitz operators.Integral Equations and Operator Theory 28 (1997), 245–250.Google Scholar

Copyright information

© Birkhäuser Verlag 2001

Authors and Affiliations

  • A. Böttcher
    • 1
  • A. V. Chithra
    • 2
  • M. N. N. Namboodiri
    • 2
  1. 1.Fakultät für MathematikTU ChemnitzChemnitzGermany
  2. 2.Department of MathematicsCochin University of Science and TechnologyCochinIndia

Personalised recommendations