Documenta Ophthalmologica

, Volume 90, Issue 1, pp 35–42 | Cite as

Stray light in photorefractive keratectomy for myopia

  • H. G. N. Veraart
  • T. J. T. P Van Den Berg
  • R. Hennekes
  • A. M. J. Adank


We performed a study to evaluate the influence on visual function of intraocular straylight after photorefractive keratectomy (PRK). We present 4 eyes of 4 myopic individuals, who had contacted our clinic for keratorefractive surgical treatment. PRK's were performed with a Summit laser, using a 5 mm ablation zone. The straylight meter was used to measure the amount of intraocular scattered light, the physical cause of glare complaints, before and after PRK. This apparatus uses the direct compensation method to assess the amount of intraocular light scatter. The results showed a significant increase in straylight values, in the tested eyes, during the first two weeks after PRK. After the initial rise, straylight values returned to preoperative levels, except for two eyes that clearly developed a haze higher than grade two. Instead of returning to baseline levels, straylight values remained significantly higher in these eyes.

Key words

Glare Haze Keratectomy Myopia Photorefractive Straylight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amayem M, Mc Donald MB, Leach DH, Ahmed S, Rando R, Varnell RJ, and Kaufman HE. Excimer laser photorefractive keratectomy (PRK) for low to moderate myopia in humans. Invest Ophthalmol Vis Sci supp 1992; 33: 762.Google Scholar
  2. 2.
    Gartry DS, Kerr Muir MG, and Marshall J. Excimer laser photorefractive keratectomy. Ophthalmology 1992; 99: 1209–1219.Google Scholar
  3. 3.
    Gartry DS, Kerr Muir MG, Lohmann CP, and Marshall J. The effect of topical corticosteroids on refractive outcome and corneal haze after photorefractive keratectomy. Arch Ophthalmol 1992; 110: 944–952.Google Scholar
  4. 4.
    Lohmann C, Gartry D, Kerr Muir M, Timberlake G, Fitzke F, and Marshall J ‘Haze’ in photorefractive keratectomy: its origins and consequences. Lasers Ophthal 1991; 4: 15–34.Google Scholar
  5. 5.
    Piebenga LW, Matta CS, Deitz MR, Tauber J, Irvine JW, and Sabates FN. Excimer photorefractive keratectomy for myopia. Ophthalmology 1993; 100: 1335–1345.Google Scholar
  6. 6.
    Salz JJ, Maguen E, Nesburn AB, Warren C, Macy JI, Hofbauer JD, Papaioannou T and Berlin M. A two-year experience with excimer laser photorefractive keratectomy for myopia. Ophthalmology 1993; 100: 873–882.Google Scholar
  7. 7.
    Seiler T and Wollensak J. Results of a prospective evaluation of photorefractive keratectomy at 1 year after surgery. German J Ophthalmol 1993; 2: 135–142.Google Scholar
  8. 8.
    Stark WJ, Chamon W, Kamp MT, Enger CL, Rencs EV, and Gottsh JD. Clinical follow up of 193-nm ArF excimer laser photokeratectomy. Ophthalmology 1992; 99: 805–812.Google Scholar
  9. 9.
    Tengroth B, Epstein D, Fagerholm P, Hamberg-Nystrom H, Fitzsimmons TD. Excimer laser photorefractive keratectomy for myopia. Ophthalmology 1993; 100: 739–745.Google Scholar
  10. 10.
    Lohmann GP, Timberlake GT, Fitzke FW, Gartry DS, Kerr Muir M, Marshall J. Corneal light scattering after excimer laser photorefractive keratectomy: The objective measurements of haze. Refract Corneal Surg 1992; 8: 114–121.Google Scholar
  11. 11.
    Roberts CW, Koester GJ. Optical zone diameters for photorefractive corneal surgery. Invest Ophthalmol Vis Sci 1993; 34: 2275–2281.Google Scholar
  12. 12.
    Marshall J, Trokel SL, Rothery S, Krueger, R. Long term healing of the central cornea after photorefractive keratectomy using an excimer laser. Ophthalmology 1988; 95: 1411–1421.Google Scholar
  13. 13.
    Lohmann CP, Fitzke F, O'Brart D, Kerr Muir M, Timberlake G, Marshall J. Corneal light scattering and visual performance in myopic individuals with spectacles, contact lenses, or excimer laser photorefractive keratectomy. Am J Ophthalmol 1993; 115: 444–453.Google Scholar
  14. 14.
    van den Berg TJTP. Importance of pathological intraocular scatter for visual disability. Doc Ophthalmol 1986; 61: 327.Google Scholar
  15. 15.
    de Waard PWT, IJspeert JK, van den Berg TJTP, de Jong PTVM. Intraocular light scattering in age-related cataracts. Inv Ophthalmol Vis Sci 1986; 27: 1131–1136.Google Scholar
  16. 16.
    van den Berg TJTP. Intraocular straylight and visual function parameters. Inv Ophthalmol Vis Sci 1994; 35: 535–536.Google Scholar
  17. 17.
    van den Berg TJTP. On the relation between glare and straylight. Doc Ophthalmol 1991; 78: 177.Google Scholar
  18. 18.
    Veraart HGN, van den Berg TJTP, IJspeert JK, Lopes Cardozo O. Straylight in radial keratotomy and the influence of pupil size and straylight angle. Am J Ophthalmol 1992; 114: 424–428.Google Scholar
  19. 19.
    van den Berg TJTP, IJspeert JK. Straylight meter.In: Technical Digest on Noninvasive Assessment of the Visual System, vol. 1. Washington, DC: O.S.A., 1989: 256–259.Google Scholar
  20. 20.
    van den Berg TJTP, IJspeeert JK, de Waard PWT. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Res 1991; 31: 1361.Google Scholar
  21. 21.
    IJspeert JK, de Waard PWT, van den Berg TJTP, de Jong PTVM. The intraocular straylight function in 129 healthy volunteers, dependence on angle, age and pigmentation. Vision Res 1990; 30: 699.Google Scholar
  22. 22.
    van den Berg TJTP, IJspeert JK. Clinical assessment of intraocular straylight. Applied Optics 1992; 31: 3694–3696.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • H. G. N. Veraart
    • 1
  • T. J. T. P Van Den Berg
    • 2
  • R. Hennekes
    • 1
  • A. M. J. Adank
    • 1
  1. 1.Department of OphthalmologyFree University of BrusselsBrusselsBelgium
  2. 2.The Netherlands Ophthalmic Research Institute and Laboratory of Medical Physics and InformaticsUniversity of AmsterdamThe Netherlands

Personalised recommendations