Integral Equations and Operator Theory

, Volume 15, Issue 6, pp 879–900 | Cite as

Explicit Wiener-Hopf factorization for certain non-rational matrix functions

  • Tuncay Aktosun
  • Martin Klaus
  • Cornelis van der Mee
Article

Abstract

Explicit Wiener-Hopf factorizations are obtained for a certain class of nonrational 2×2 matrix functions that are related to the scattering matrices for the 1-D Schrödinger equation. The diagonal elements coincide and are meromorphic and nonzero in the upper-half complex plane and either they vanish linearly at the origin or they do not vanish. The most conspicuous nonrationality consists of imaginary exponential factors in the off-diagonal elements.

MSC

47A68 81U40 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    T. Aktosun,Perturbations and Stability of the Marchenko Inversion Method, Ph.D. thesis, Indiana University, Bloomington, 1986.Google Scholar
  2. 2.
    T. Aktosun,Marchenko Inversion for Perturbations, I., Inverse Problems3, 523–553 (1987).Google Scholar
  3. 3.
    T. Aktosun,Potentials which Cause the Same Scattering at all Energies in One Dimension, Phys. Rev. Lett.58, 2159–2161 (1987).Google Scholar
  4. 4.
    T. Aktosun, Examples of Non-uniqueness in One-dimensional Inverse Scattering for which T(k)=O(k3) and O(k4) as k→0, Inverse Problems3, L1-L3 (1987).Google Scholar
  5. 5.
    T. Aktosun,Exact Solutions of the Schrödinger Equation and the Non-uniqueness of Inverse Scattering on the Line, Inverse Problems4, 347–352 (1988).Google Scholar
  6. 6.
    T. Aktosun, M. Klaus and C. van der Mee,Scattering and Inverse Scattering in One-dimensional Nonhomogeneous Media, J. Math. Phys.33, 1717–1744 (1992).Google Scholar
  7. 7.
    T. Aktosun and R. G. Newton,Nonuniqueness in the One-dimensional Inverse Scattering Problem, Inverse Problems1, 291–300 (1985).Google Scholar
  8. 8.
    T. Aktosun and C. van der Mee,Scattering and Inverse Scattering for the 1-D Schrödinger Equation with Energy-dependent Potentials, J. Math. Phys.32, 2786–2801 (1991).Google Scholar
  9. 9.
    K. Clancey and I. Gohberg,Factorization of Matrix Functions and Singular Integral Operators, Birkhäuser OT3, 1981.Google Scholar
  10. 10.
    A. Degasperis and P. C. Sabatier,Extension of the One-dimensional Scattering Theory, and Ambiguities, Inverse Problems3, 73–109 (1987).Google Scholar
  11. 11.
    P. Deift and E. Trubowitz,Inverse Scattering on the Line, Comm. Pure Appl. Math.32, 121–251 (1979).Google Scholar
  12. 12.
    L. D. Faddeev,Properties of the S-matrix of the One-dimensional Schrödinger Equation, Amer. Math. Soc. Transl.2, 139–166 (1964); also: Trudy Matem. Inst. Steklova73, 314–336 (1964) [Russian].Google Scholar
  13. 13.
    I. M. Gel'fand and B. M. Levitan,On the Determination of a Differential Equation from its Spectral Function, Amer. Math. Soc. Transl., Series2, 1, 253–304 (1955); also: Izv. Akad. Nauk SSSR15 (4), 309–360 (1951) [Russian].Google Scholar
  14. 14.
    I. C. Gohberg and M. G. Krein,Systems of Integral Equations on a Half-line with Kernels depending on the Difference of Arguments, Amer. Math. Soc. Transl., Series2, 14, 217–287 (1960); also: Uspekhi Matem. Nauk SSSR13(2), 3–72 (1959) [Russian].Google Scholar
  15. 15.
    I. C. Gohberg and J. Leiterer,Factorization of Operator Functions with respect to a Contour. II. Canonical Factorization of Operator Functions Close to the Identity, Math. Nachr.54, 41–74 (1972) [Russian].Google Scholar
  16. 16.
    A. B. Lebre,Factorization in the Wiener Algebra of a Class of 2×2 Matrix Functions, Integral Equations and Operator Theory12, 408–423 (1989).Google Scholar
  17. 17.
    A. B. Lebre and A. F. dos Santos,Generalized Factorization for a Class of Nonrational 2×2 Matrix Functions, Integral Equations and Operator Theory13, 671–700 (1990).Google Scholar
  18. 18.
    V. A. Marchenko,Sturm-Liouville Operators and Applications, Birkhäuser OT22, Basel-Boston-Stuttgart, 1986.Google Scholar
  19. 19.
    E. Meister and F.-O. Speck,Wiener-Hopf Factorization of Certain Non-rational Matrix Functions in Mathematical Physics. In: H. Dym et al. (Eds.),The Gohberg Anniversary Collection, II., Birkhäuser OT41, Basel-Boston-Stuttgart, 1989, pp. 385–394.Google Scholar
  20. 20.
    R. G. Newton,Inverse Scattering. I. One Dimension, J. Math. Phys.21, 493–505 (1980).Google Scholar
  21. 21.
    R. G. Newton,The Marchenko and Gel'fand-Levitan Methods in the Inverse Scattering Problem in One and Three Dimensions. In: J. B. Bednar et al. (Eds.),Conference on Inverse Scattering: Theory and Application, SIAM, Philadelphia, 1983, pp. 1–74.Google Scholar
  22. 22.
    R. G. Newton,Remarks on Inverse Scattering in One Dimension, J. Math. Phys.25, 2991–2994 (1984).Google Scholar
  23. 23.
    R. G. Newton,Factorizations of the S-matrix, J. Math. Phys.31, 2414–2424 (1990).Google Scholar
  24. 24.
    F. S. Teixeira,Generalized Factorization for a Class of Symbols in [PC(R)]2×2, Appl. Anal.36, 95–117 (1990).Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • Tuncay Aktosun
    • 1
  • Martin Klaus
    • 2
  • Cornelis van der Mee
    • 3
  1. 1.Dept. of MathematicsNorth Dakota State UniversityFargo
  2. 2.Dept. of MathematicsVirginia Polytechnic Institute and State UniversityBlacksburg
  3. 3.Dept. of Physics and AstronomyFree UniversityAmsterdamThe Netherlands

Personalised recommendations