Advertisement

Combinatorica

, Volume 13, Issue 1, pp 57–63 | Cite as

On graphical partitions

  • P. Erdős
  • L. B. Richmond
Article

Abstract

An integer partition {λ12,...,λ v } is said to be graphical if there exists a graph with degree sequence 〈λ i 〉. We give some results corcerning the problem of deciding whether or not almost all partitions of even integer are non-graphical. We also give asymptotic estimates for the number of partitions with given rank.

AMS subject classification code (1991)

10 J 20 05 C 99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Andrews: Sieves for theorems of Euler, Ramanujan and Rogers, in:The Theory of Arithmetic Functions, Lecture Notes in Math.251, (AA. Gioia and D. L. Goldsmith, eds.), 1–20, Springer, Berlin, 1971.Google Scholar
  2. [2]
    A. O. L. Atkin: A note on ranks and conjugacy of partitions,Quart. J. Math. Oxford Ser (2),17 (1966), 335–338.Google Scholar
  3. [3]
    F. C. Auluck, S. Chowla andH. Gupta:J. Indian Math. Soc. 6 (1942) 105–12.Google Scholar
  4. [4]
    D. Bressoud: Extension of the partition Sieve,J. Number Th. 12 (1980), 87–100.Google Scholar
  5. [5]
    F. J. Dyson: Some guesses in the theory of partitions,Eureka (Cambridge),8 (1944), 10–15.Google Scholar
  6. [6]
    P. Erdős andT. Gallai: Graphs with prescribed degrees of vertices, (Hungarian),Mat. Lapok 11 (1960), 264–74.Google Scholar
  7. [7]
    P. Erdős andJ. Lehner: The distribution of the number of summands in the partitions of a positive integer,Duke Math. J. 8 (1941), 335–45.Google Scholar
  8. [8]
    F. Harary:Graph Theory, Addison-Wesley, 1969.Google Scholar
  9. [9]
    C. St. J. A. Nash-Williams: Valency sequences which force graphs to have Hamiltonian circuits; Interim Report C. & O. Research Report, Fac. of Math., University of Waterloo.Google Scholar
  10. [10]
    K. F. Roth andSzekeres: Some asymptotic formulas in the theory of partitions,Quart. J. Math. Oxford Ser. (2) 5 (1954), 241–259.Google Scholar
  11. [11]
    M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group I,Acta Math. Acad. Scien. Hungaricae 29 (1977), 361–379.Google Scholar
  12. [12]
    M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group II,Acta Math. Acad. Scien. Hungaricae 29 (1977), 381–392.Google Scholar
  13. [13]
    M. Szalay andP. Turán: On some problems of a statistical theory of partitions with application to characters of the symmetric group III,Acta Math. Acad. Scien. Hungaricae 32 (1978), 129–155.Google Scholar
  14. [14]
    E. M. Wright: The evolution of unlabelled graphs,J. London Math. Soc. 14 (1976), 554–558.Google Scholar
  15. [15]
    E. M. Wright: Graphs on unlabelled nodes with a large number of edges,Proc. London Math. Soc. 28 (1974), 577–94.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • P. Erdős
    • 1
  • L. B. Richmond
    • 2
  1. 1.Mathematical Institute of theHungarian Academy of SciencesBudapestHungary
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations