Advertisement

Combinatorica

, Volume 13, Issue 1, pp 1–5 | Cite as

Clique coverings of the edges of a random graph

  • Béla Bollobás
  • Paul Erdős
  • Joel Spencer
  • Douglas B. West
Article

Abstract

The edges of the random graph (with the edge probabilityp=1/2) can be covered usingO(n2lnlnn/(lnn)2) cliques. Hence this is an upper bound on the intersection number (also called clique cover number) of the random graph. A lower bound, obtained by counting arguments, is (1−ɛ)n2/(2lgn)2.

AMS subject classification code (1991)

05 C 80 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Bollobás: The chromatic number of the random graph,Combinatorica 8 (1988).Google Scholar
  2. [2]
    P. Erdős, A. Goodman, andL. Pósa: The representation of a graph by set intersections.Canad. J. Math. 18 (1966), 106–112.Google Scholar
  3. [3]
    P. Erdős andD.B. West: A note on the interval number of a graph.Disc. Math. 55 (1985), 129–133.Google Scholar
  4. [4]
    J.R. Griggs: Extremal values of the interval number of a graph, II.Disc. Math. 28 (1979), 37–47.Google Scholar
  5. [5]
    J.R. Griggs andD.B. West: Extremal values of the interval number of a graph, I.SIAM J. Alg. Disc. Meth. 1 (1980), 1–7.Google Scholar
  6. [6]
    D.W. Matula: The largest clique size in a random graph, Tech. Rep. Dept. Comp. Sci. Southern Methodist Univ., Dallas [1976].Google Scholar
  7. [7]
    E.R. Scheinerman On the interval number of random graphs,Discrete Math. 82 (1990), 105–109.Google Scholar
  8. [8]
    J. Spinrad, G. Vijayan, andD.B. West: An improved edge bound on the interval number of a graph.J. Graph Th. 11 (1987), 447–449.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • Béla Bollobás
    • 1
    • 2
  • Paul Erdős
    • 4
  • Joel Spencer
    • 3
  • Douglas B. West
    • 5
  1. 1.Louisiana State UniversityBaton Rouge
  2. 2.Cambridge Univ.England
  3. 3.Courant InstituteNew YorkUSA
  4. 4.Hungarian Academy of SciencesBudapestHungary
  5. 5.University of IllinoisUrbana

Personalised recommendations