Archiv der Mathematik

, Volume 47, Issue 1, pp 55–65 | Cite as

Some classes of operators onC(K, E). Extension and applications

  • Fernando Bombal
  • Baltasar Rodriguez-Salinas


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Batt andE. J. Berg, Linear bounded transformations on the space of continuous functions. J. Funct. Anal.4, 215–239 (1969).Google Scholar
  2. [2]
    F.Bombal, On weakly compact operators on spaces of vector valued continuous functions. To appear in Proc. Amer. Math. Soc.Google Scholar
  3. [3]
    F. Bombal andP. Cembranos, Characterization of some classes of operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Phil. Soc.97, 137–146 (1985).Google Scholar
  4. [4]
    J. K. Brooks andP. W. Lewis, Linear operators and vector measures. Trans. Amer. Math. Soc.192, 139–162 (1974).Google Scholar
  5. [5]
    P. Cembranos, On Banach spaces of vector-valued continuous functions. Bull. Austral. Math. Soc.28, 175–186 (1983).Google Scholar
  6. [6]
    P. Cembranos, N. Kalton, E. Saab andP. Saab, Pelczynski's PropertyV onC(Ω, E) spaces. Math. Ann.271, 91–97 (1985).Google Scholar
  7. [7]
    J. Diestel andJ. J. Uhl Jr., Vector measures. Math. Surveys15, Amer. Math. Soc., Providence, R. I. 1977.Google Scholar
  8. [8]
    N.Dinculeano, Vector measures. Berlin 1967.Google Scholar
  9. [9]
    I. Dobrakov, On representation of linear operators onC 0(T, X). Czech. Math. J.21, 13–30 (1971).Google Scholar
  10. [10]
    A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du typeC (K), Canad. J. Math.5, 129–173 (1953).Google Scholar
  11. [11]
    J.Horváth, Topological vector spaces and distributions. New York 1966.Google Scholar
  12. [12]
    A. and C.Ionescu Tulcea, Topics in the theory of lifting. Berlin 1969.Google Scholar
  13. [13]
    H. E.Lacey, The isometric theory of classical Banach spaces. Berlin 1974.Google Scholar
  14. [14]
    P. Saab, Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Phil. Soc.95, 101–108 (1984).Google Scholar
  15. [15]
    L.Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures. Oxford 1973.Google Scholar
  16. [16]
    M. Talagrand, La proprieté de Dunford-Pettis dansC(K, E) etL 1(E). Israel J. Math.44, 317–321 (1983).Google Scholar

Copyright information

© Birkhäuser Verlag 1986

Authors and Affiliations

  • Fernando Bombal
    • 1
  • Baltasar Rodriguez-Salinas
    • 1
  1. 1.Departamento de Teoría de Funciones Facultad de MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations