, Volume 13, Issue 3, pp 279–361 | Cite as

Hadwiger's conjecture forK6-free graphs

  • Neil Robertson
  • Paul Seymour
  • Robin Thomas


In 1943, Hadwiger made the conjecture that every loopless graph not contractible to the complete graph ont+1 vertices ist-colourable. Whent≤3 this is easy, and whent=4, Wagner's theorem of 1937 shows the conjecture to be equivalent to the four-colour conjecture (the 4CC). However, whent≥5 it has remained open. Here we show that whent=5 it is also equivalent to the 4CC. More precisely, we show (without assuming the 4CC) that every minimal counterexample to Hadwiger's conjecture whent=5 is “apex”, that is, it consists of a planar graph with one additional vertex. Consequently, the 4CC implies Hadwiger's conjecture whent=5, because it implies that apex graphs are 5-colourable.

AMS subject classification code (1991)

05 C 15 05 C 75 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Appel, andW. Haken: Every planar map is four colorable. Part I. Discharging,Illinois J. Math. 21 (1977), 429–490.Google Scholar
  2. [2]
    K. Appel, W. Haken, andJ. Koch: Every planar map is four colorable. Part II. Reducibility,Illinois J. Math. 21 (1977), 491–567.Google Scholar
  3. [3]
    G. A. Dirac: A property of 4-chromatic graphs and some remarks on critical graphs,J. London Math. Soc. 27 (1952), 85–92.Google Scholar
  4. [4]
    H. Hadwiger: Über eine Klassifikation der Streckenkomplexe,Vierteljahrsschr. Naturforsch. Ges. Zürich 88 (1943), 133–142.Google Scholar
  5. [5]
    L. Jørgensen: Contractions toK 8,J. Graph Theory, to appear.Google Scholar
  6. [6]
    H. A. Jung: Eine Verallgemeinerung desn-fachen Zusammenhangs für Graphen,Math. Ann. 187 (1970), 95–103.Google Scholar
  7. [7]
    W. Mader: Homomorphiesätze für Graphen,Math. Ann. 178 (1968), 154–168.Google Scholar
  8. [8]
    W. Mader: Über die Maximalzahl kreuzungsfreierH-Wege,Arch. Math. (Basel) 31 (1978), 387–402.Google Scholar
  9. [9]
    W. Mader: Über trennende Eckenmengen in homomorphiekritischen Graphen,Math. Ann. 175 (1968), 243–252.Google Scholar
  10. [10]
    J. Mayer: Conjecture de Hadwiger:k=6. II-Réductions de sommets de degré 6 dans les graphes 6-chromatiques contraction-critiques.Discrete Math. 101 (1992), 213–222.Google Scholar
  11. [11]
    J. Mayer: Hadwiger's conjecture (k=6): neighbour configurations of 6-vertices in contraction-critical graphs,Discrete Math. 74 (1989), 137–148.Google Scholar
  12. [12]
    N. Robertson, andP. D. Seymour: Graph Minors. IX. Disjoint crossed paths,J. Combinatorial Theory, Ser. B,49 (1989), 40–77.Google Scholar
  13. [13]
    P. D. Seymour: Disjoint paths in graphs,Discrete Math. 29 (1980), 293–309.Google Scholar
  14. [14]
    Y. Shiloach: A polynomial solution to the undirected two paths problem,J. Assoc. Comp. Mach. 27 (1980), 445–456.Google Scholar
  15. [15]
    C. Thomassen: 2-linked graphs,European J. Combinatorics 1 (1980), 371–378.Google Scholar
  16. [16]
    W. T. Tutte: The factorization of linear graphs,J. London Math. Soc. 22 (1947), 107–111.Google Scholar
  17. [17]
    K. Wagner: Über eine Eigenschaft der ebenen Komplexe,Math. Ann. 114 (1937), 570–590.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Neil Robertson
    • 1
  • Paul Seymour
    • 2
  • Robin Thomas
    • 3
  1. 1.Dept. of MathematicsOhio State UniversityColumbusUSA
  2. 2.MorristownUSA
  3. 3.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations