Advertisement

computational complexity

, Volume 6, Issue 1, pp 64–99 | Cite as

Counting curves and their projections

  • Joachim von zur Gathen
  • Marek Karpinski
  • Igor Shparlinski
Article

Abstract

Some deterministic and probabilistic methods are presented for counting and estimating the number of points on curves over finite fields, and on their projections. The classical question of estimating the size of the image of a univariate polynomial is a special case. For curves given by sparse polynomials, the counting problem is #P-complete via probabilistic parsimonious Turing reductions.

Keywords

Computational Mathematic Problem Complexity Probabilistic Method Algorithm Analysis Finite Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. R. Alford, A. Granville, andC. Pomerance, There are infinitely many Carmichael numbers.Annals of Mathematics 140 (1994), 703–722.Google Scholar
  2. E. Bach, Weil bounds for singular curves.Applicable algebra in Engineering, Communication and Computing 7 (1996), 289–298.Google Scholar
  3. J. Birch andH. P. F. Swinnerton-Dyer, Note on a problem of Chowla.Acta Arith. 5 (1959), 417–423.Google Scholar
  4. E. Bombieri, On exponential sums in finite fields.Amer. J. Math. 88 (1966), 71–105.Google Scholar
  5. A. L. Chistov and D. Yu. Grigoryev, Polynomial-time factoring of the multivariable polynomials over a global field. LOMI preprint E-5-82, Leningrad, USSR, 1982.Google Scholar
  6. M. Clausen, A. Dress, J. Grabmeier, andM. Karpinski, On zero testing and interpolation ofk-sparse multivariate polynomials over finite fields.Theor. Computer Science 84 (1991), 151–164.Google Scholar
  7. D. Coppersmith andS. Winograd, Matrix multiplication via arithmetic progressions.J. Symb. Comp. 9 (1990), 251–280.II. Davenport,Multiplicative Number Theory. Springer-Verlag, Second edition, 1980.Google Scholar
  8. A. Díaz and E. Kaltofen, On computing greatest common divisors with polynomials given by black boxes for their evaluations. InProc. ISSAC 1995, 1995.Google Scholar
  9. M. D. Fried and M. Jarden,Field Arithmetic. Springer-Verlag, 1986.Google Scholar
  10. M. R. Garey andD. S. Johnson,Computers and intractability: A guide to the theory of NP-Completeness. W. H. Freeman, San Francisco CA, 1979.Google Scholar
  11. J. Von zur Gathen, Tests for permutation polynomials.SIAM J. Comput. 20(3) (1991), 591–602.Google Scholar
  12. J. von zur Gathen andE. Kaltofen, Factorization of multivariate polynomials over finite fields.Math. Comp. 45 (1985), 251–261.Google Scholar
  13. J. von zur Gathen andV. Shoup, Computing Frobenius maps and factoring polynomials.Computational complexity 2 (1992), 187–224.Google Scholar
  14. J. von zur Gathen and I. E. Shparlinski, Components and projections of curves over finite fields. InProc. 5th Int. Symp. on Algorithms and Computation ISSAC '94, vol. 834 ofSpringer Lecture Notes in Computer Science, 1994, 297–305. SIAM J. Comput., to appear.Google Scholar
  15. J. von zur Gathen and I. E. Shparlinski, Finding points on curves over finite fields. InProc. 36th Ann. IEEE Symp on Foundations of Computer Science, 1995, 284–292.Google Scholar
  16. D. Yu. Grigoryev and M. Karpinski, An approximation algorithm for the number of zeros of arbitrary polynomials overGF(q). InProc. 20th Ann. IEEE Symp. Foundations of Computer Science, 1991, 662–669.Google Scholar
  17. D. Yu. Grigoryev, M. Karpinski, andM. F. Singer, Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields.SIAM J. Comp. 19 (1990), 1059–1063.Google Scholar
  18. R. Hartshorne,Algebraic Geometry. Springer-Verlag, 1977.Google Scholar
  19. M.-D. Huang and D. Ierardi, Counting rational points on curves over finite fields. InProc. 34th Ann. IEEE Symp. on Foundations of Computer Science, Palo Alto CA, 1993, 616–625.Google Scholar
  20. E. Kaltofen, Fast parallel absolute irreducibility testing.J. Symb. Computation 1 (1985), 57–67.Google Scholar
  21. R. M. Karp, M. Luby, andN. Madras, Monte-Carlo approximation algorithms for enumeration problems.J. Algorithms 10(3) (1989), 429–448.Google Scholar
  22. M. Karpinski andM. Luby, Approximating the number of solutions of aGF[2] polynomial.J. Algorithms 14 (1993), 280–287.Google Scholar
  23. A. K. Lenstra, Factoring multivariate polynomials over finite fields.J. Comput. System Sci. 30 (1985), 235–248.Google Scholar
  24. R. Lidl andH. Niederreiter,Finite Fields, vol. 20 ofEncyclopedia of Mathematics and its Applications. Addison-Wesley, Reading MA, 1983.Google Scholar
  25. K. Ma andJ. von zur Gathen, Tests for permutation functions.Finite Fields and their Applications 1 (1995), 31–56.Google Scholar
  26. K. S. McCurley, Explicit zero-free regions for DirichletL-functions.J. Number Theory 19 (1984), 7–32.Google Scholar
  27. R. Pila, Frobenius maps of Abelian varieties and finding roots of unity in finite fields.Math. Comp. 55 (1990), 745–763.Google Scholar
  28. D. A. Plaisted, Sparse complex polynomials and polynomial reducibility.J. Comp. and System Sciences 14 (1977), 210–221.Google Scholar
  29. D. A. Plaisted, New NP-hard and NP-complete polynomial and integer divisibility problems.Theor. Computer Science 31 (1984), 125–138.Google Scholar
  30. A. Quick, Some GCD and divisibility problems for sparse polynomials. Technical Report 191/86, Department of Computer Science, University of Toronto, 1986.Google Scholar
  31. J. B. Rosser andL. Schoenfeld, Approximate formulas for some functions of prime numbers.Ill. J. Math. 6 (1962), 64–94.Google Scholar
  32. R. J. Schoof, Elliptic curves over finite fields and the computation of square roots modp.Math. Comp. 44(170) (1985), 483–494.Google Scholar
  33. J. T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities.J. Assoc. Computing Machinery 27 (1980), 701–717.Google Scholar
  34. J.-P. Serre, Sur le nombre des points rationels d'une courbe algébrique sur un corps fini.C.R. Acad. Sci. Paris, Ser. 1 296 (1983a), 397–402.Google Scholar
  35. J.-P. Serre, Nombre de points des courbes algébriques sur Fq.Sémin. de Théorie des Nombres de Bordeaux (1983b), 1–8.Google Scholar
  36. I. R. Shafarevich,Basic algebraic geometry. Grundlehren Band 213. Springer Verlag, 1974.Google Scholar
  37. V. Shoup, Searching for primitive roots in finite fields.Math. Comp. 58(197) (1992), 369–380.Google Scholar
  38. I. E. Shparlinski, On primitive elements in finite fields and on elliptic curves.Mat. Sbornik 181(9) (1990), 1196–1206. Math. USSR Sbornik71 (1992), 41–50.Google Scholar
  39. I. E. Shparlinski,Computational and algorithmic problems in finite fields, vol. 88 ofMathematics and its applications. Kluwer Academic Publishers, 1992a.Google Scholar
  40. I. E. Shparlinski, A deterministic test for permutation polynomials.Computational complexity 2 (1992b), 129–132.Google Scholar
  41. I. E. Shparlinski andA. N. Skorobogatov, Exponential sums and rational points on complete intersections.Mathematika 37 (1990), 201–208.Google Scholar
  42. I. M. Vinogradov,Elements of number theory. Dover Publ. New York NY, 1954.Google Scholar
  43. S. G. Vladut andV. G. Drinfeld, Number of points on an algebraic curve.Funktsional'nyi Analis i Prilogenija 17(1) (1983), 68–69. Functional Analysis and its Appl.17 (1983), 53–54.Google Scholar

Copyright information

© Birkhäuser Verlag 1997

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  • Marek Karpinski
    • 3
  • Igor Shparlinski
    • 2
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.School of MPCEMacquarie UniversitySydneyAustralia
  3. 3.Department of Computer ScienceUniversity of BonnBonnGermany

Personalised recommendations