computational complexity

, Volume 2, Issue 2, pp 133–186 | Cite as

Counting connected components of a semialgebraic set in subexponential time

  • D. Yu. Grigor'ev
  • N. N. VorobjovJr.
Article

Abstract

Let a semialgebraic set be given by a quantifier-free formula of the first-order theory of real closed fields withk atomic subformulae of the typefi≥0 for 1≤ik, where the polynomialsfi∈ℤ[X1,...,Xn] have degrees deg(fi)<d and the absolute value of each (integer) coefficient offi is at most 2M. An algorithm is exhibited which counts the number of connected components of the semialgebraic set in time (M (kd)n20)O (1). Moreover, the algorithm allows us to determine whether any pair of points from the set are situated in the same connected component.

Subject classifications

68C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ben-Or, D. Kozen andJ. Reif, The complexity of elementary algebra and geometry.J. Comput. System Sci. 32 (1986), 251–264.Google Scholar
  2. J. Canny,The Complexity of Robot Motion Planning. MIT Press, Cambridge, 1988.Google Scholar
  3. J. Canny, D. Yu. Grigorév, and N. N. Vorobjov, Jr., Finding connected components of a semialgebraic set in subexponential time. Submitted toAppl. Alg. in Eng. Comm. Comput., 1991.Google Scholar
  4. A. L. Christov and D. Yu. Grigor'ev,Subexponential-time solving systems of algebraic equations, I, II. Preprints LOMI E-9-83 & E-10-83, Leningrad, 1983.Google Scholar
  5. G. E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition.Springer Lec. Notes Comp. Sci. 33 (1975), 134–183.Google Scholar
  6. A. Dold,Lectures on Algebraic Topology. Springer-Verlag, Berlin, 1972.Google Scholar
  7. N. Fitchas, A. Galligo, and J. Morgenstern,Algorithmes rapides en séquentiel et en parallèle pour l'élimination de quantificateurs en géométrie élémentaire. UER de Mathématiques Université de Paris VII, 1988.Google Scholar
  8. D. Yu. Grigor'ev, Computational complexity in polynomial algebra.Proc. International Congress of Mathematicians, Berkelev, 1986, 1452–1460.Google Scholar
  9. D. Yu. Grigor'ev, Complexity of deciding Tarski algebra.J. Symb. Comp. 5 (1988), 65–108.Google Scholar
  10. D. Yu. Grigor'ev, J. Heintz, M.-F. Roy, P. Solernó, andN. N. Vorobjov, Jr., Comptage des composantes connexes d'un ensemble semi-algebrique en temps simplement exponential.C. R. Acad. des. Sci. Paris, Ser. I311 (1990), 879–882.Google Scholar
  11. D. Yu. Grigor'ev andN. N. Vorobjov, Jr., Solving systems of polynomial Inequalities in subexponential time.J. Symb. Comp. 5 (1988), 37–64.Google Scholar
  12. J. Heintz, Definability and fast quantifier elimination in algebraically closed field.Theor. Comp. Sci. 24 (1983), 239–278.Google Scholar
  13. J. Heintz, M.-F. Roy, andP. Solernó,Construction de chemins dans un ensemble semi-algébrique. Preprint, Univ. Buenos Aires, Argentina, 1990a.Google Scholar
  14. J. Heintz, M.-F. Roy, and P. Solernó, Single exponential path finding in semialgebraic sets.Proc. AAECC Conf., Tokyo, 1990b.Google Scholar
  15. J. Heintz, M.-F. Roy, andP. Solernó, Sur la complexité du principe de Tarski-Seidenberg.Bull. Soc. Math. France,118 (1990c), 101–126.Google Scholar
  16. M. W. Hirsch,Differential Topology. Springer-Verlag, Berlin, 1976.Google Scholar
  17. S. Lang,Algebra. Addison-Wesley, New York, 1965.Google Scholar
  18. J. Renegar,On the computational complexity and geometry of the first-order theory of reals, Parts I–III. Technical Report, Cornell University, 1989.Google Scholar
  19. I. R. Shafarevich,Basic Algebraic Geometry. Springer-Verlag, Berlin, 1974.Google Scholar
  20. A. Tarski,A Decision Method for Elementary Algebra and Geometry. University of California Press, 1951.Google Scholar
  21. N. N. Vorobjov, Jr., Deciding consistency of systems of inequalities being polynomial in exponential functions in subexponential times.Notes of Sci. Seminars of Leningrad Department of Math. Steklov Inst. 176 (1989), 3–52 (in Russian).Google Scholar
  22. N. N. Vorobjov, Jr. andD. Yu. Grigor'ev, Determination of the number of connected components of a semialgebraic set in subexponential time.Soviet Math. Dokl. 42 (1991), 563–566.Google Scholar
  23. H. R. Wüthrich, Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper.Springer Lec. Notes Comp. Sci 43 (1976), 138–162.Google Scholar

Copyright information

© Birkhäuser Verlag 1992

Authors and Affiliations

  • D. Yu. Grigor'ev
    • 1
  • N. N. VorobjovJr.
    • 1
  1. 1.V. A. Steklov Mathematical InstituteAcademy of SciencesSt. PetersburgRussia

Personalised recommendations