Acta Mechanica

, Volume 107, Issue 1–4, pp 1–11 | Cite as

Nonlinear effects on rotating disk flow in a cylindrical casing

  • A. Khalili
  • R. R. Adabala
  • H. H. Rath
Contributed Papers


The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration. The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jeffery, G. B.: On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. Ser. 2,14, 327–338 (1915).Google Scholar
  2. [2]
    Kanwal, R. P.: Slow steady rotation of axially symmetric bodies in a viscous fluid. J. Fluid Mech.10, 17–24 (1961).Google Scholar
  3. [3]
    Kim, M. U.: Slow rotation of a disk in a fluid-filled circular cylinder. J. Phys. Soc. Jap.50, 4063–4067 (1981).Google Scholar
  4. [4]
    Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. New Jersey: Prentice-Hall 1965.Google Scholar
  5. [5]
    Schmieden, C.: Über den Widerstand einer in einer Flüssigkeit rotierenden Scheibe. Z. Angew. Math. Mech.8, 460–479 (1928).Google Scholar
  6. [6]
    Hyun, J. M.: Flow near a slowly rotating disk in a finite cylinder. J. Phys. Soc. Jap.53, 3808–3813 (1984).Google Scholar
  7. [7]
    Wang, C. Y.: Slow rotation of a disk in a fluid-filled casing. Acta Mech.94, 97–103 (1992).Google Scholar
  8. [8]
    Powell, M. J. D.: A hybrid method for nonlinear equations. In: Numerical methods for nonlinear algebraic equations (Rabinowitz, P., ed.). London: Gordon and Breach 1970.Google Scholar
  9. [9]
    Zurmühl, R.: Praktische Mathematik für Ingenieure und Physiker 6th ed. Berlin, Heidelberg, New York: Springer 1985.Google Scholar
  10. [10]
    Pao, H. P.: Numerical solution of the Navier-Stokes equations for flows in the disk cylinder system. Phys. Fluids15, 4–11 (1972).Google Scholar
  11. [11]
    Dijkstra, D., Van Heijst, G. J. F.: The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech.128, 123–154 (1983).Google Scholar
  12. [12]
    Escudier, M. P.: Observation of the flow in cylindrical containers by a rotating endwall. Expts. Fluids2, 189–196 (1984).Google Scholar
  13. [13]
    Lugt, H. J., Abboud, M.: Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. J. Fluid Mech.179, 179–200 (1987).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • A. Khalili
    • 1
  • R. R. Adabala
    • 2
  • H. H. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenFederal Republic of Germany
  2. 2.Dept. of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations