Microchimica Acta

, Volume 93, Issue 1–6, pp 33–45 | Cite as

The re-discovery of the fast Fourier transform algorithm

  • James W. Cooley
Plenary Lectures


The discovery of the fast Fourier transform (FFT) algorithm and the subsequent development of algorithmic and numerical methods based on it have had an enormous impact on the ability of computers to process digital representations of signals, or functions. At first, the FFT was regarded as entirely new. However, attention and wide publicity led to an unfolding of its pre-electronic computer history going back to Gauss. The present paper describes the author's own involvement and experience with the FFT algorithm.

Key words

FFT fast Fourier transform DFT discrete Fourier transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. T. Heideman, D. H. Johnson, C. S. Burrus,The ASSP Magazine (Oct.) 1984,1, 14.Google Scholar
  2. [2]
    J. W. Cooley, J. W. Tukey,Math. Comp. 1965,19, 297.Google Scholar
  3. [3]
    I. J. Good,J. Royal Statist. Soc., Ser. B. 1958,20, 361;1960,22, 371 (MR 21 1674; MR 23 A4231).Google Scholar
  4. [4]
    C. S. Burrus, P. W. Eschenbacher,IEEE Trans. Acoust. Speech and Signal Processing 1981,ASSP-29, 806.Google Scholar
  5. [5]
    R. B. Blackman, J. W. Tukey,The Measurement of Power Spectra, Dover, New York, 1959.Google Scholar
  6. [6]
    W. M. Gentleman, G. Sande,Fast Fourier Transforms for Fun and Profit (1966 Fall Joint Computer Conf., AFIPS Proc. Vol. 29), Spartan, Washington, DC, 1966, pp. 563–578.Google Scholar
  7. [7]
    L. R. Welch,Computation of Finite Fourier Series (Tech. Report No. SPS 37-37, Vol. 4), Jet Propulsion Lab, Pasadena, CA, 1966. Also,A Program for Finite Fourier Transforms (Tech. Report No. SPS 37-40, Vol. 3), Jet Propulsion Lab, Pasadena, CA, 1966.Google Scholar
  8. [8]
    J. W. Cooley, P. A. Lewis, P. D. Welch,IEEE Trans. Audio Electroacoustics 1969,AU-17, 77.Google Scholar
  9. [9]
    J. W. Cooley, P. A. W. Lewis, P. D. Welch,IEEE Trans, on Education 1969,E-12, 27.Google Scholar
  10. [10]
    P. D. Welch,IEEE Trans. Audio Electroacoustics 1969,AU-15, 209.Google Scholar
  11. [11]
    J. W. Cooley, P. A. W. Lewis, P. D. Welch,J. Sound Vib. 1970,12, 339.Google Scholar
  12. [12]
    R. W. Hockney,J. Assoc. Computing Machinery 1965,12, 95.Google Scholar
  13. [13]
    R. W. Hockney,The Potential Calculation and Some Applications (Methods in Computational Physics, Vol.9), Academic Press, New York, 1970;I.B.M. Research Report R.C. 2870, 1970.Google Scholar
  14. [14]
    Special Issue on Fast Fourier Transform and Its Application to Digital Filtering and Spectral Analysis,IEEE Trans. Audio Electroacoustics 1967,AU-15, 43.Google Scholar
  15. [15]
    Special Issue on Fast Fourier Transform,IEEE Trans. Audio Electroacoustics 1969,AU-17, 65.Google Scholar
  16. [16]
    J. Connes, P. Connes, J.-P. Maillard,Atlas des Spectres dans le Proche Infrarouge de Vénus, Mars, Jupiter et Saturne, Éditions du Centre de la Recherche Scientifique, Paris, 1969.Google Scholar
  17. [17]
    L. H. Thomas, in:Applications of Digital Computers, Ginn, Boston, 1963.Google Scholar
  18. [18]
    K. Stumpff,Grundlagen und Methoden der Periodenforschung, Springer, Berlin, 1937; K. Stumpff,Tafeln und Aufgaben zur Harmonischen Analyse und Periodogrammrechnung, Springer, Berlin, 1939.Google Scholar
  19. [19]
    G. C. Danielson, C. Lanczos,J. Franklin Inst. 1942,233, 365 and 435.Google Scholar
  20. [20]
    P. Rudnick,Math. Comp. 1966,20, 429.Google Scholar
  21. [21]
    R. L. Garwin,IEEE Trans. Audio Electroacoustics 1969,AU-17, 69.Google Scholar
  22. [22]
    J. W. Cooley, P. A. Lewis, P. D. Welch,IEEE Trans. Audio Electroacoustics 1967,AU-15, 76.Google Scholar
  23. [23]
    C. Runge, H. König,Vorlesungen über Numerisches Rechnen (Die Grundlehren der Mathematischen Wissenschaften, Band XI), Springer, Berlin, 1924.Google Scholar
  24. [24]
    C. Lanczos,Applied Analysis, Prentice Hall, Englewood Cliffs, NJ, 1956.Google Scholar
  25. [25]
    C. Lanczos,Discourse on Fourier Series, Oliver and Boyd, Edinburgh-London, 1966.Google Scholar
  26. [26]
    H. H. Goldstine,A History of Numerical Analysis from the 16th Through the 19th Century, Springer, New York-Heidelberg-Berlin, 1977, pp. 249–253.Google Scholar
  27. [27]
    C. F. Gauss,Nachlaβ: Theoria interpolationis methodo nova tractata (Carl Friedrich Gauss, Werke, Band 3), Königliche Gesellschaft der Wissenschaften, Göttingen, 1866, pp. 265–303.Google Scholar
  28. [28]
    J. W. Cooley,How the FFT Gained Acceptance, Proceedings of the Association for Computing Machinery Conference on the History of Scientific and Numeric Computation, Princeton, NJ, May 13–15, 1987.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • James W. Cooley
    • 1
  1. 1.Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations