Journal of Insect Behavior

, Volume 6, Issue 6, pp 659–673 | Cite as

Tropical pollinators in the canopy and understory: Field data and theory for stratum “preferences”

  • David W. Roubik
Article

Abstract

Claims have been made for a canopy preference by large bees pollinating tropical flowers—without data or tests that support or refute this opinion. The working hypothesis for bee foraging behavior in three dimensions is that forager experience can produce stratum fidelity, just as rewarding foraging produces floral fidelity. Wideranging search behavior should allow bees to track spatiotemporal distribution of resources. A systematic study of 20 bee species and 10 genera: Apis, Trigona, Eulaema, Centris, Euglossa, Scaptotrigona, Partamona, Megalopta, Rhinetula,and Oxytrigonawas made in two forests in Panama. Two traps were operated simultaneously at canopy height and in the understory to test whether there were consistent stratum associations. Studies were continuous for 1 and 8 years. The only high-canopy foragers were two nocturnal bees, all the rest flew at both heights with similar probability or consistently came to lower traps. Large euglossines showed a tendency to forage high, which was directly related to their capacity for heat loss during flight, compared to smaller euglossines. They are also more conspicuous in warning coloration, another expected correlate of foraging more often in the open. Although large variance in stratum association predominates, some medium-sized diurnal forest bees avoid the exposed upper canopy, while some nocturnal bees tend to forage there.

Key words

Apis bees Centris Euglossinae Megalopta Meliponinae pollination stratoorientation stratum fidelity tropical forest canopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, J. D. (1983). Specificity and mutual dependency of the orchid-euglossine bee interaction.Biol. J. Linn. Soc. 20: 301–314.Google Scholar
  2. Bawa, K. S. (1990). Plant-pollinator interactions in tropical rain forests.Annu. Rev. Syst. Ecol. 21: 399–422.Google Scholar
  3. Bawa, K. S., Bullock, S. H., Perry, D. R., Coville, R. E., and Grayum, M. H. (1985). Reproductive biology of lowland rain forest trees II. Pollination systems.Am. J. Bot. 72: 346–356.Google Scholar
  4. Becker, P., Moure, J. S., and Peralta, F. J. A. (1992). More about euglossine bees in Amazonian forest fragments.Biotropica 23: 586–591.Google Scholar
  5. Campos, L. A. O., da Silveira, F. A., de Oliveira, M. L., Abrantes, C. V. M., Morato, E. F., and de Melo, G. A. R. (1989). UtilizaÇÃo de armadilhas para a captura de machos de Euglossini (Hymenoptera, Apoidea).Revista Brasil. Zool. 6: 621–626.Google Scholar
  6. Casey, T. M., May, M. L., and Morgan, K. R. (1985). Flight energetics of euglossine bees in relation to morphology and wing stroke frequency.J. Exp. Biol. 116: 271–289.Google Scholar
  7. Chappell, M. A. (1984). Temperature regulation and energetics of the solitary beeCentris pallida during foraging and intermale mate competition.Physiol. Zool. 57: 215–225.Google Scholar
  8. Darwin, C. (1876).Cross and Self-Fertilisation in the Vegetable Kingdom, J. Murray, London.Google Scholar
  9. Dressler, R. L. (1982). Biology of the orchid bees (Euglossini).Annu. Rev. Ecol. System. 13: 373–394.Google Scholar
  10. Frankie, G. W., Haber, W. A., Opler, P. A., and Bawa, K. S. (1983). Characteristics and organization of the large bee pollination system inthe Costa Rican dry forest. In Jones, C. E., and Little, R. J., (eds.),Handbook of Experimental Pollination Biology, Van Nostrand Reinhold, New York, pp. 411–448.Google Scholar
  11. Frankie, G. B., Vinson, S. B., Newstrom, L. E., Barthell, J. F., Haber, W. A., and Frankie, J. K. (1990). Plant phenology, pollination ecology, pollinator behavior and conservation of pollinators in neotropical dry forest. In Bawa, K. S., and Hadley, M. (eds.),Reproductive Ecology of Tropical Forest Plants, United Nations Educational Scientific and Cultural Organization, Man and the Biosphere Series, Vol. 7, Parthenon, Carnforth, UK.Google Scholar
  12. Heinrich, B. (1976). Foraging specializations of individual bumble bees.Ecological Monographs 46: 105–128.Google Scholar
  13. Heinrich, B., and Buchmann, S. L. (1986). Thermoregulatory physiology of the carpenter bee,Xylocopa varipuncta.J. Comp. Physiol. B 156: 557–562.Google Scholar
  14. Jander, R. (1975). Ecological aspects of animal orientation.Annu. Rev. Syst. Ecol. 6: 171–188.Google Scholar
  15. Janzen, D. H. (1981). Bee arrival at two Costa Rican femaleCatasetum orchid inflorescences, and a hypothesis on euglossine population structure.Oikos 36: 177–183.Google Scholar
  16. Karr, J. R. (1972). A comparative study of the structure of avian communities in selected Panamanian and Illinois habitats.Ecol. Monogr. 41: 207–233.Google Scholar
  17. Kato, M., Roubik, D. W., and Inoue, T. (1992). Foraging behavior and concentration preference of male euglossine bees (Apidae: Hymenoptera).Tropics 1: 259–264.Google Scholar
  18. MacArthur, R. H. (1958). Population ecology of some warblers of northwestern coniferous forests.Ecology 39: 399–415.Google Scholar
  19. May, M. L., and Casey, T. M. (1983). Thermoregulation and heat exchange in euglossine bees.Physiol. Zool. 56: 541–551.Google Scholar
  20. Michener, C. D. (1990). Classification of the Apidae (Hymenoptera).Univ. Kans. Sci. Bull. 54: 75–164.Google Scholar
  21. Peng, R. K., Sutton, S. C., and Fletcher, C. R. (1992). Spatial and temporal distribution patterns of flying Diptera.J. Zool. 228: 329–340.Google Scholar
  22. Perry, D. A., and Starrett, A. (1980). The pollination ecology and blooming strategy of a neotropical emergent tree,Dipteryx panamensis.Biotropica 12: 307–311.Google Scholar
  23. Roubik, D. W. (1979). Africanized honey bees, stingless bees, and the structure of tropical plant-pollinator communities. In Caron, D. (ed.),Proceedings of the IV International Symposium on Pollination, Maryland Agricultural Experiment Station Miscellaneous Publication 1.Google Scholar
  24. Roubik, D. W. (1989).Ecology and Natural History of Tropical Bees, Cambridge University Press, New York.Google Scholar
  25. Roubik, D. W. (1990). Niche preemption in tropical bee communities: A comparison of neotropical and malesian faunas. In Sakagami, S. F., Ohgushi, R., and Roubik, D. W. (eds.),Natural History of Social Wasps and Bees in Equatorial Sumatra, Hokkaido University Press, Sapporo, Japan.Google Scholar
  26. Roubik, D. W. (1992). Loose niches in tropical communities: Why are there so few bees and so many trees? In Hunter, M. D., Ohgushi, T., and Price, P. W. (eds.),Effects of Resource Distribution on Animal-Plant Interactions, Academic Press, San Diego, CA.Google Scholar
  27. Roubik, D. W., and Ackerman, J. D. (1987). Long-term ecology of euglossine orchid-bees (Apidae: Euglossini) in Panama.Oecologia 73: 321–333.Google Scholar
  28. Roubik, D. W., and Moreno, J. E. (1991).Pollen and Spores of Barro Colorado Island, Monographs in Systematic Botany, No. 36, Missouri Botanical Garden, St. Louis.Google Scholar
  29. Roubik, D. W., and Wolda, H. (1993). Pollinator population dynamics on a tropical forest island: 15 years, three El Niño events, and colonization by African honeybees (submitted for publication).Google Scholar
  30. Roubik, D. W., Ackerman, J. D., Copenhaver, C., and Smith, B. H. (1982). Stratum, tree and flower selection by tropical bees: Implications for the reproductive biology of outcrossingCochlospermum vitifolium in Panamá.Ecology 63: 712–720.Google Scholar
  31. Stone, G. N., Amos, J. N., Stone, T. F., Knight, R. L., Gay, H., and Parrott, F. (1988). Thermal effects on activity patterns and behavioral switching in a concourse of foragers onStachytarpheta mutabilis (Verbenaceae) in Papua New Guinea.Oecologia 77: 56–65.Google Scholar
  32. Sutton, S. L., and Hudson, P. J. (1980). The vertical distribution of small flying insects in the lowland rain forest of Zaire.Zool. J. Linn. Soc. 68: 111–123.Google Scholar
  33. Waddington, K. D. (1979). Divergence of inflorescence height: An evolutionary response to pollinator fidelity.Oecologia 40: 43–50.Google Scholar
  34. Whitten, W. M., Young, A. M., and Williams, N. H. (1989). Function of glandular secretions in fragrance collection by male euglossine bees (Apidae: Euglossini).J. Chem. Ecol. 15: 1285–1295.Google Scholar
  35. Willmer, P. G. (1991). Constraints on foraging by solitary bees. InBehavior and Physiology of Bees, Goodman, L. J., and Fisher, R. C. (eds.), CAB International, Wallingford, UK.Google Scholar
  36. Wolda, H., and Roubik, D. W. (1986). Nocturnal bee abundance and seasonal bee activity in a Panamanian forest.Ecology 67: 426–433.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • David W. Roubik
    • 1
  1. 1.Smithsonian Tropical Research InstituteBalboaPanamá

Personalised recommendations