Experimental & Applied Acarology

, Volume 16, Issue 1–2, pp 15–35 | Cite as

Water balance and humidity requirements of house dust mites

  • Larry G. Arlian

Abstract

The house dust mites,Dermatophagoides farinae, D. pteronyssinus andEuroglyphus maynei, are prevalent in homes in humid geographical areas throughout the world. These mites thrive in humid environments in human dwellings where there is no liquid water to drink. However, their bodies contain 70–75% water by weight, which must be maintained in order to reproduce. Their primary source of water is water vapor which is actively extracted from unsaturated air. At relative humidities above 65–70%, adequate amounts of water can be extracted from unsaturated air to compensate for that lost by all avenues. Active uptake is associated with ingestion of a hyperosmotic solution which is secreted by the supracoxal glands. Active mites do not survive longer than 6–11 days at RHs ≤50%. They survive extended dry periods by forming a desiccation-resistant protonymphal stage which can survive for months at RHs below the critical humidity for active stages. Feeding rate and allergen production is directly influenced by RH. Mites feed, multiply, and produce more fecal matter at higher RHs than at lower ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, A., 1988. Population growth and developmental stages of the house dust mite,Dermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 25: 370–373.PubMedGoogle Scholar
  2. Arlian, L.G., 1975a. Water exchange and effect of water vapor activity on metabolic rate in the dust mite,Dermatophagoides. J. Insect Physiol., 21: 1439–1442.PubMedGoogle Scholar
  3. Arlian, L.G., 1975b. Dehydration and survival of the European house dust mite,Dermatophagoides pteronyssinus. J. Med. Entomol., 12: 437–442.PubMedGoogle Scholar
  4. Arlian, L.G., 1976. Mites and house dust allergy. J. Asthma Res., 13(4): 165–172.PubMedGoogle Scholar
  5. Arlian, L.G., 1977. Humidity as a factor regulating feeding and water balance of house dust mites,Dermatophagoides farinae andD. pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 14: 484–488.PubMedGoogle Scholar
  6. Arlian, L.G., 1979. Significance of passive sorption of atmospheric water vapor and feeding in water balance of the rice weevil,Sitophilus oryzae. Comp. Biochem. Physiol., 62A: 725–733.Google Scholar
  7. Arlian, L.G., 1989. Biology and ecology of house dust mites,Dermatophagoides spp. andEuroglyphus spp. Immunol. Allergy Clin. N. Am., 9: 339–356.Google Scholar
  8. Arlian, L.G. and Eckstrand, I.A., 1975. Water balance inDrosophila pseudoobscura, and its ecological implications. Ann. Entomol. Soc. Am., 68: 827–832.Google Scholar
  9. Arlian, L.G. and Staiger, T.E., 1979. Water balance in the semiaquatic beetle,Peltodytes muticus. Comp. Biochem. Physiol., 62A: 1041–1047.Google Scholar
  10. Arlian, L.G. and Veselica, M.M., 1979. Review: Water balance in insects and mites. Comp. Biochem. Physiol., 64A: 191–200.Google Scholar
  11. Arlian, L.G. and Veselica, M.M., 1981a. Re-evaluation of the humidity requirements of the house dust miteDermatophagoides farinae (Acari: Pyroglyphidae). J. Med. Entomol., 18: 351–352.Google Scholar
  12. Arlian, L.G. and Veselica, M.M., 1981b. Effect of temperature on the equilibrium body water mass in the miteDermatophagoides farinae. Physiol. Zool., 54: 393–399.Google Scholar
  13. Arlian, L.G. and Veselica, M.M., 1982. Relationship between transpiration rate and temperature in the miteDermatophagoides farinae. Physiol. Zool., 55: 344–354.Google Scholar
  14. Arlian, L.G. and Wharton, G.W., 1974. Kinetics of active and passive components of water exchange between the air and a mite,Dermatophagoides farinae. J. Insect Physiol., 20: 1063–1077.PubMedGoogle Scholar
  15. Arlian, L.G., Bernstein, I.L. and Gallagher, J.S., 1982. The prevalence of house dust mites,Dermatophagoides spp., and associated environmental conditions in homes in Ohio. J. Allergy Clin. Immunol., 69: 527–532.PubMedGoogle Scholar
  16. Arlian, L.G., Woodford, P.J., Bernstein, I.L., et al., 1983. Seasonal population structure of house dust mites,Dermatophagoides spp. (Acari: Pyroglyphidae). J. Med. Entomol., 20: 99–102.PubMedGoogle Scholar
  17. Arlian, L.G., Rapp, C.M. and Ahmed, S.G., 1990. Development ofDermatophagoides pteronyssinus (Acari: Pyroglyphidae). J. Med. Entomol., 27: 1035–1040.PubMedGoogle Scholar
  18. Boudreaux, H.B., 1958. The effect of relative humidity on egg-laying, hatching and survival in various spider mites. J. Insect Physiol., 2: 65–72.Google Scholar
  19. Brandt, R.L. and Arlian, L.G., 1976. Mortality of house dust mites,Dermatophagoides farinae andD. pteronyssinus, exposed to dehydrating conditions or selected pesticides. J. Med. Entomol., 13: 327–331.PubMedGoogle Scholar
  20. Brody, A.R. and Wharton, G.W., 1970.Dermatophagoides farinae: ultrastructure of lateral opisthosomal dermal glands. Trans. Am. Microbiol. Soc., 89: 499–513.Google Scholar
  21. Brody, A.R., McGrath, J.C. and Wharton, G.W., 1972.Dermatophagoides farinae: the digestive system: J.N.Y. Entmol. Soc., 80: 152–177.Google Scholar
  22. Brody, A.R., McGrath, J.C. and Wharton, G.W., 1976.Dermatophagoides farinae: the supracoxal glands. J.N.Y. Entomol. Soc., 84: 34–47.Google Scholar
  23. Carswell, F., Robinson, D.W., Oliver, J., et al., 1982. House dust mites in Bristol. Clin. Allergy, 12: 533–545.PubMedGoogle Scholar
  24. Cross, H.F. and Wharton, G.W., 1964. A comparison of the number of tropical rat mites and tropical fowl mites that fed at different temperatures. J. Econ. Entomol., 57: 439–443.Google Scholar
  25. Cutcher, J., 1973. The critical equilibrium activity of nonfeedingTyrophagus putrescentiae (Acarina: Acaridae). Ann. Entomol. Soc. Am., 66: 609–611.Google Scholar
  26. Devine, T.L., 1969. A systematic analysis of the exchange of water between a miteLaelaps echidnina and the surrounding vapor. Ph.D. Dissertation, Ohio State University, Columbus, OH, 79 pp.Google Scholar
  27. Devine, T.L., 1977. Incorporation of tritium from water into tissue components of the booklouseLiposcelis bostrychophilus J. Insect Physiol., 23: 1315–1321.Google Scholar
  28. Devine, T.L., 1982. The dynamics of body water in the booklouse,Liposcelis bostrychophilus (Badonnel). J. Exp. Zool., 222: 335–351.Google Scholar
  29. Devine, T. and Wharton, G.W., 1973. Kinetics of water exchange between a mite,Laelaps echidnina, and the surrounding air. J. Insect Physiol., 19: 243–254.PubMedGoogle Scholar
  30. Domrow, R., 1970. Seasonal variation in numbers of house-dust mite in Brisbane. Med. J. Aust., 2: 1248–1250.PubMedGoogle Scholar
  31. Dusbábek, F., 1975. Population structure and dynamics of the house dust miteDermatophagoides farinae (Acarina: Pyroglyphidae) in Czechoslovakia. Folia Parasitol. (Praha), 22: 219–231.Google Scholar
  32. Ellingsen, I.J., 1974. Comparison of active and quiescent protonymphs of the American housedust mite. Ph.D. Dissertation, Ohio State University, Columbus, OH, 82 pp.Google Scholar
  33. Ellingsen, I.J., 1975. Permeability to water in different adaptive phases of the same instar in the American house dust mite. Acarologia, 17: 734–744.Google Scholar
  34. Ellingsen, I.J., 1978. Oxygen consumption in active and quiescent protonymphs of the American house dust mite. J. Insect Physiol., 24: 13–16.Google Scholar
  35. Furumizo, R.T., 1975. Laboratory observations on the life history and biology of the American house dust miteDermatophagoides farinae (Acarina: Pyroglyphidae). Calif. Vector Views, 22: 49–60.Google Scholar
  36. Furumizo, R.T., 1978. Seasonal abundance ofDermatophagoides farinae Hughes 1961 (Acarina: Pyroglyphidae) in house dust in southern California. Calif. Vector Views, 25: 13–19.Google Scholar
  37. Hart, B.J. and Fain, A., 1988. Morphological and biological studies of medically important housedust mites. Acarologia, 19: 285–295.Google Scholar
  38. Hughes, A.M., 1976. The mites of stored food and houses. Ministry of Agriculture, Fisheries and Food, Her Majesty's Stationary Office, London, 400 pp.Google Scholar
  39. Knülle, W., 1965. Die Sorption und Transpiration des Wasserdampfes bei der Mehlmilbe (Acarus siro L.). Z. Vergl. Physiol., 49: 586–604.Google Scholar
  40. Knülle, W., 1967. Significance of fluctuating humidities and frequency of blood meals on the survival of the spiny rat mite,Echinolaelaps echidninus (Berlese). J. Med. Entomol., 4: 322–325.PubMedGoogle Scholar
  41. Knülle, W., 1984. Water vapor uptake in mites and insects: an ecophysiological and evolutionary perspective. Acarology, 6: 71–82.Google Scholar
  42. Lang, J.D. and Mulla, M.S., 1978. Seasonal dynamics of house dust mites,Dermatophagoides spp., in homes in southern California. Environ. Entomol., 7: 281–286.Google Scholar
  43. Larson, D.G., 1969. The critical equilibrium activity of adult females of the house dust mite,Dermatophagoides farinae Hughes. Ph.D. Thesis, Ohio State University, Columbus, OH, 35 pp.Google Scholar
  44. Leupen, M.J. and Varekamp, H., 1966. Some constructional and physical considerations concerning the microclimatological conditions affecting growth of the house dust mite (Dermatophagoides). In: Proc. 5th Interasthma Congr. Utrecht. Pressa Trajectina, Utrecht, pp. 44–55.Google Scholar
  45. Lustgraaf, B.V.D., 1978. Seasonal abundance of the xerophilic fungi and house-dust mites (Acarida: Pyroglyphidae) in mattress dust. Oecologia, 36: 81–91.Google Scholar
  46. Murray, A.B. and Zuk, P., 1979. The seasonal variation in a population of house dust mites in a North American city. J. Allergy Clin. Immunol., 64: 266–269.PubMedGoogle Scholar
  47. Needham, G.R. and Teel, P.D., 1991. Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol., 36: 659–681.PubMedGoogle Scholar
  48. Rodriguez, J.G., 1954. Radiophosphorus in metabolism studies in the two-spotted spider mite. J. Econ. Entomol., 47: 514–517.Google Scholar
  49. Rudolph, D. and Knülle, W., 1974. Site and mechanism of water vapour uptake from the atmosphere in ixodid ticks. Nature, 249: 84–85.PubMedGoogle Scholar
  50. Rudolph, D. and Knülle, W., 1978. Uptake of water vapour from the air: process, site and mechanism in ticks. In: K. Schmidt-Nielsen, L. Bolis and S.H.P. Maddrell (Editors), Comparative Physiology: Water, Ions and Fluid Mechanics. Cambridge University Press, Cambridge, pp. 97–113.Google Scholar
  51. Rudolph, D. and Knülle, W., 1982. Novel uptake systems for atmospheric vapor among insects. J. Exp. Zool., 222: 321–334.Google Scholar
  52. Spieksma, F.Th.M. and Spieksma-Boezeman, M.I.A., 1967. The mite fauna of house dust with particular reference to the house-dust miteDermatophagoides pteronyssinus (Trouessart, 1897) (Psoroptidae: Sarcoptiformes). Acarologia, 1: 226–241.Google Scholar
  53. Spieksma, F.Th.M., Zuidema, P. and Leupen, M.H., 1971. High altitude and house-dust mites. Br. Med. J., 9: 82–84.Google Scholar
  54. Toolson, E.C., 1980. Thermodynamic and kinetic aspects of water flux through the arthropod cuticle. J. Thermal Biol., 5: 1–6.Google Scholar
  55. Van Bronswijk, J.E., 1973.Dermatophagoides pteronyssinus (Trouessart, 1897) in mattress and floor dust in a temperate climate (Acari: Pryoglyphiade). J. Med. Entomol., 10: 63–70.PubMedGoogle Scholar
  56. Van Bronswijk, J.E.M.H. and Sinha, R.N., 1971. Pyroglyphid mites (Acari) and house dust allergy. J. Allergy, 47: 31–52.PubMedGoogle Scholar
  57. Wharton, G.W., 1978. Uptake of water vapour by mites and mechanisms utilized by the acaridei. In: K. Schmidt-Nielsen, L. Bolis and S.H.P. Maddrell (Editors), Comparative Physiology: Water, Ions and Fluid Mechanics, Cambridge University Press, Cambridge, pp. 79–95.Google Scholar
  58. Wharton, G.W., 1985. Water balance of insects. In: G.A. Kerkut and L.I. Gilbert (Editors), Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon, New York, NY, pp. 565–601.Google Scholar
  59. Wharton, G.W. and Arlian, L.G., 1972. Utilization of water by terrestrial mites and insects. In: J.G. Rodriguez (Editor), Insect and Mite Nutrition. North Holland, Amsterdam, pp. 153–165.Google Scholar
  60. Wharton, G.W. and Cross, H.F., 1957. Studies on the feeding habits of three species of laelaptid mites. J. Parasitol., 43: 45–50.PubMedGoogle Scholar
  61. Wharton, G.W. and Devine, T.L., 1968. Exchange of water between a mite,Laelaps echidnina, and the surrounding air under equilibrium conditions. J. Insect Physiol., 14: 1303–1318.PubMedGoogle Scholar
  62. Wharton, G.W. and Furumizo, R.T., 1977. Supracoxal gland secretions as a source of fresh water for Acaridei. Acarologia, 19: 112–116.Google Scholar
  63. Wharton, G.W. and Richards, A.G., 1978. Water vapor exchange kinetics in insects and acarines. Annu. Rev. Entomol., 23: 309–328.Google Scholar
  64. Wharton, G.W., Duke, K.M. and Epstein, H.M., 1979. Water and the physiology of house dust mites. Rec. Adv. Acarol., 1: 325–335.Google Scholar

Copyright information

© Elsevier Science Publishers B.V. 1992

Authors and Affiliations

  • Larry G. Arlian
    • 1
  1. 1.Department of Biological SciencesWright State UniversityDaytonUSA

Personalised recommendations