Archiv der Mathematik

, Volume 61, Issue 4, pp 367–376

M-Besovp-classes and Hankel operators in the Bergman space on the unit ball

  • Miroljub Jevtić
  • Miroslav Pavlović
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Ahern andJ. Bruna, Maximal and area integral characterization of Hardy-Sobolev spaces in the unit ball ofC n. Rev. Math. Iberoamericana4, 123–153 (1988).Google Scholar
  2. [2]
    P. Ahern andC. Cascante, Exceptional sets for Poisson integral of potentials on the unit sphere inC n,p ≦ 1. Pacific J. Math.153, 1–15 (1992).Google Scholar
  3. [3]
    D. Békollé, C. A. Berger, L. A. Coburn andK. H. Zhu, BMO in the Bergman metric on baunded symmetric domains. J. Funct. Anal.93, 310–350 (1990).Google Scholar
  4. [4]
    K. Hohn andE. Youssfi, ℳ-harmonic Besovp-spaces and Hankel operators in the Bergman space on the ball inC n. Manuscripta Math.71, 67–81 (1991).Google Scholar
  5. [5]
    S.Krantz, Function theory of several complex variables. New York 1982.Google Scholar
  6. [6]
    M. Pavlović, Inequalities for the gradient of eigen functions of the invariant Lapladan in the unit ball. Indag. Math.2, 89–98 (1991).Google Scholar
  7. [7]
    W.Rudin, Function theory in the unit ball ofC n. Berlin-Heidelberg-New York 1980.Google Scholar
  8. [8]
    R. Timoney, Bloch functions in several complex variables, I. Bull. London Math. Soc.12, 241–267 (1980).Google Scholar
  9. [9]
    K. Zhu, Schatten class Hankel operators on the Bergman space of the unit ball. Amer. J. Math.113, 147–167 (1991).Google Scholar

Copyright information

© Birkhäuser Verlag 1993

Authors and Affiliations

  • Miroljub Jevtić
    • 1
  • Miroslav Pavlović
    • 1
  1. 1.Matematički fakultetBeogradYugoslavia

Personalised recommendations