Natural nitriles and their metabolism

  • J. L. Legras
  • G. Chuzel
  • A. Arnaud
  • P. Galzy


The present work reviews the numerous nitrile compounds that have been isolated from plants and animals. Two kinds of potentially toxic molecules are widespread, namely the cyanogenic glycosides and cyanollpids. Many other aromatic and allphatic nitriles are synthesized to a lesser extent. Different studies on the synthesis and degradation of these cyanogenic compounds are also reviewed to emphasize the potential use of different microorganisms for the detoxification of food and foodstuff.


Ce travail passe en revue les nombreux composés nitrillques qui ont été isolés du royaume des plantes et animaux. Deux types de molécules à potentiel toxique sont largement répandus, notamment les glycosides cyanogènes et les cyanolipides. De nombreux autres nitriles aromatiques et alystatiques sont synthétisés dans une moindre mesure. Diverses études sur la synthèse et la dégradation de ces composés cyanogenes sont également passés en revue afin de mettre en évidence l'emploi putalli des différents microorganismes pour la detoxification de denrées et matières alimentalres.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrol, Y.P., Conn, E.E. &Strocker, J.I.R. 1966 Studies on the identification, biosynthesis and metabolism of cyanogenic glucosides inNandina domestica Thumb.Phytochemistry 5, 1021–1027.Google Scholar
  2. Ahmad, R., Ahmad, I. &Osman, S.M. 1985 A cyanogenetic lipid fromKoelrenteria apiculata seed oil.Chemistry and Industry 21, 734.Google Scholar
  3. Allen, J. &Strobel, G.A. 1966 The assimilation of H14CN by a variety of fungi.Canadian Journal of Microbiology 12, 414.PubMedGoogle Scholar
  4. Aritomi, M., Kumori, T. &Kawasaki, T. 1985 Cyanogenic glycosides in leaves ofPerrilla frutescens var.acuta.Phytochemistry 24, 2438–2439.Google Scholar
  5. Arnaud, A. 1984 Remarques sur le métabolisme des nitriles et des amides chez une souche deBrevibacterium sp. Thèse de Doctorat d'Etat. Université des Sciences et Techniques du Languedoc, Montpellier, France.Google Scholar
  6. Arnaud, A., Galzy, P. &Jallageas, J.L. 1976 Etude de l'activité nitrilasique de quelques bactéries.Revue des Fermentations et des Industries Alimentaires 31, 39–44.Google Scholar
  7. Asano, Y., Yasuda, T., Tani, Y. &Yamada, H. 1982 A new enzymatic method of acrylamide production.Agricultural and Biological Chemistry 46, 1183–1189.Google Scholar
  8. Bui, K., Fradet, H., Arnaud, A. &Galzy, P. 1984 A nitrile hydratase with a wide substrate spectrum produced by aBrevibacterium sp.Journal of General Microbiology 130, 89–93.Google Scholar
  9. Bunch, A.W. &Knowles, C.J. 1980 Cyanide production and degradation during growth of the snow mold fungus.Journal of General Microbiology 116 9–16.Google Scholar
  10. Butler, G.W. &Butler, B.G. 1960 Biosynthesis of linamarin and lotaustralin in white clover.Nature 187, 780–781.Google Scholar
  11. Butterfield, C.S., Conn, E.E. &Seigler, D.S. 1975 Elucidation of structure and biosynthesis of acacipetalin.Phytochemistry 14, 993–997.Google Scholar
  12. Capron, R.J. &MacLeod, J.K. 1987 Two epimeric dibromonitriles from the Australian spongeAplysina laevis.Australian Journal of Chemistry 40, 341–346.Google Scholar
  13. Castric, P.A. 1977 Glycine metabolism byPseudomonas aeruginosa hydrogen cyanide biosynthesis.Journal of Bacteriology 130, 826–831.PubMedGoogle Scholar
  14. Castric, P.A. &Strobel, G.A. 1969 Cyanide metabolism byBacillus megaterium.Journal of Biological Chemistry 244, 4089–4094.PubMedGoogle Scholar
  15. Chamberlain, K. &Wain, R.L. 1973 Studies on plant growth relating substance—XXXVI. The metabolism of indole 3 acetonitrile and related compounds in wheat and pea tissues.Annals of Applied Biology 75, 409–417.Google Scholar
  16. Ballester, A., Verwey, A. &Overeem, J.C. 1975 2-Hydroxyphenyl acetic acid and 2,4-dihydroxyphenyl acetonitrile fromErica scoparia.Phytochemistry 14, 1667–1668.Google Scholar
  17. Bandyopadhyay, A.K., Nagasawa, T., Asano, Y., Fujishiro, H., Tani, Y. &Yamada, H. 1986 Purification and characterization of benzonitrilases fromArthrobacter sp. strain J-1.Applied and Environmental Microbiology 51, 302–306.Google Scholar
  18. Bell, E.A. 1971 Comparative biochemistry of non-protein amino-acid. InChemotaxonomy of the Leguminosae eds. Harbone, J.B., Boutler, D. & Turner B.L., pp. 179–206. London: Academic Press.Google Scholar
  19. Bennet-Clark, T.A. &Kefford, N.P. 1953 Chromatogrphy of the growth substances in plant extracts.Nature 171, 645–647.PubMedGoogle Scholar
  20. Bove, C. &Conn, E.E. 1961 Metabolism of aromatic compounds in higher plants—II. Purification and properties of the oxynitrilase ofSorghum vulgare.Journal of Biological Chemistry 236, 207–210.Google Scholar
  21. Brysk, M.M., Corpe, W.A. &Hankes, L.V. 1969 β-Cyanoalanine formation byChromomacterium violaceum.Journal of Bacteriology 97, 322–327.PubMedGoogle Scholar
  22. Brysk, M.M. &Ressler, C. 1970 γ-Cyano-α-l-aminobutyric acid. A new product of cyanide fixation inChromobacterium violaceum.Journal of Biological Chemistry 245, 1156–1160.PubMedGoogle Scholar
  23. Clapp, R.C., Bisset, F.M., Coburn, R.A. &Long, L. 1966 Cyanogenesis in manioc, linamarin and isolinamarin.Phytochemistry 5, 1323–1326.Google Scholar
  24. Coburn, R.A. &Long, L. Jr. 1966 Gynocardin.Journal of Organic Chemistry 31, 4312–4315.Google Scholar
  25. Colotello, N. &Ward, E.W. 1961 β-Glycosidase activity and cyanogenesis in the susceptibility of alfalfa to winter crown rot.Nature 184, 242–243.Google Scholar
  26. Commeyras, A., Arnaus, A., Galzy, P. & Jallageas, J.C. 1973 Procédé de préparation d'acides organiques par hydrolyse biologique.Brevet Fr. no. 73-33613.Google Scholar
  27. Commeyras, A., Arnaus, A., Galzy, P. & Jallageas, J.C. 1973 Procédé de préparation d'acides organiques par hydrolyse biologique.Brevet, Fr. no. 73-41828.Google Scholar
  28. Conn, E.E. 1973 Biosynthesis of cyanogenic glycosides. InNitrogen Metabolism in Plants, eds, Goodwin, T.W. & Smellie, R.M.S. Biochemical Society Symposium, Vol. 38, pp. 277–302. London: The Biochemical Society.Google Scholar
  29. Conn, E.E. 1979a Cyanogenic glycosides. InInternational Review of Biochemistry of Nutrition I.A., eds Neuberger, A., Jukes, T.H., Vol. 27, pp. 21–43. Baltimore: University Park Press.Google Scholar
  30. Conn, E.E. 1979b Biosynthesis of cyanogenic glycosides.Naturwissenschaften 66, 28–34.PubMedGoogle Scholar
  31. Conn, E.E. &Akazawa, T. 1958 Biosynthesis ofp-hydroxybenzaldehyde.Federation Proceedings: Federation of American Societies for Experimental Biology 17, 205.Google Scholar
  32. Davis, R.H. &Nahrstedt, A. 1985 Cyanogenesis in insects. InComprehensive Insect Physiology, Biochemistry and Pharmacology. Vol. 11, eds, Kerkut, G.A. & Gilbert, L.I., pp 635–654. Oxford: Pergamon Press.Google Scholar
  33. Dierickx, P., Wauters, E. &Vendrig, J. 1975 On the requirement of hydroxynitrile lyase in the conversion of orthonil to chloro-tolylacetic acid.Zeitschrift für Pflanzen-physiologie 75, 191–200.Google Scholar
  34. Digeronimo, M.J. &Antoine, A.D. 1976 Metabolism of acetonitrile and propionitrile byNocardia rhodocrous LL 100-21.Applied and Environmental Microbiology 31, 900–906.PubMedGoogle Scholar
  35. Duffey, S.S. 1981 Cyanide and arthropods. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F., pp. 385–414. London: Academic Press.Google Scholar
  36. Dunnill, P.M. &Fowden, L. 1965 Enzymic formation of β-cyanoalanine from cyanide byEscherichia coli extracts.Nature 208, 1206–1207.PubMedGoogle Scholar
  37. Emerson, H.W., Cady, H.P. &Bailey, E.H.S. 1913, On the formation of hydrocyanic acid from proteins.Journal of Biological Chemistry 15, 415–417.Google Scholar
  38. Erb, N., Zinstheister, H.D. Lehmann, G. &Nahrstedt, A. 1979 A new cyanogenic glycoside fromHordeum vulgare.Phytochemistry 18, 1515–1517.Google Scholar
  39. Ettlinger, M.G., Jaroszewski, J.W., Jensen, S.R., Nielsen, B.J. & Nartey, F. 1977 Proacacipetalin and acacipetalin.Journal of the Chemical Society. Chemical Communications, 952–953.Google Scholar
  40. Eyjolfson, R. 1970 Isolation and structure determination of triglochinin a new cyanogenic glucoside fromTriglobin maritimum.Phytochemistry 9, 845–851.Google Scholar
  41. Eyjolfson, R. 1971 Constitution and stereochemistry of lucumin a cyanogenic glucoside fromLucuma mammosa.Acta Chemica Scandinavica 25, 1898–1900.PubMedGoogle Scholar
  42. Fawcett, C.H. Seeley, R.C., Taylor, H.F., Wain, R.L. &Wightman, F. 1955 Alpha-oxydation of omega-(2∶4-dichlorophenoxy) alkanenitriles and 3-indolylacetonitrile within plant tissues.Nature 176, 1026–1028.Google Scholar
  43. Fawcett, C.H., Taylor, H.F., Wain, R.L. &Wightman, F. 1958 The metabolism of certain acids, amides and nitriles within plant tissues.Proceedings of the Royal Society, London 148B, 543–570.Google Scholar
  44. Firmin, J.L. &Gray, D.O. 1976 The biochemical pathway for the breakdown of methyl cyanide (acetonitrile) in bacteria.Biochemical Journal 158, 223–229.PubMedGoogle Scholar
  45. Fry, W.E. &Millar, D. 1972 Cyanide degradation by an enzyme fromStemphylium loti.Archives of Biochemistry and Biophysics 151, 468–474.PubMedGoogle Scholar
  46. Fry, W.E. &Munch, D.C. 1975 Hydrogen cyanide detoxification byGloeocercospora sorghi.Physiological Plant Pathology 7, 23–33.Google Scholar
  47. Fry, W.E. &Myers, D.F. 1981 Hydrogen cyanide metabolism by fungal pathogens of cyanogenic plants. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F. pp. 321–334. London: Academic Press.Google Scholar
  48. Fukuda, Y., Fukui, M., Harada, T. &Izumi, Y. 1971 Formation of amino acid from aminonitrile by cell suspensions of a strain ofCorynebacterium.Journal of Fermentation Technology 49, 1011–1016.Google Scholar
  49. Fulmor, W., van Lear, G.E., Morton, G.O. &Mills, R.D. 1970 Isolation and absolute configuration of the aerophlysinin I enantiomorphic pair fromLanthella ardis.Tetrahedron Letters 52, 4551–4552.PubMedGoogle Scholar
  50. Gander, J.E. 1962 Incorporation of14C intop-hydroxymandelonitrile β-glucoside and other phenolic substances inSorghum seedlings.Journal of Biological Chemistry 237, 3329–3332.Google Scholar
  51. Gewitz, H.S., Piefke, J., Langowska, K. &Venesland B. 1980 The formation of hydrogen cyanide from histidine in the presence of amino acid oxidase and peroxidase.Biochimica et Biophysica Acta 611, 11–26.PubMedGoogle Scholar
  52. Gewitz, H.S., Pistorius, E.K., Voss, H. &Venesland B. 1976, Cyanide formation in preparations fromChlorella and New Zealand spinach leaves: effect of added aminoacids.Planta 131, 149–153.Google Scholar
  53. Giza, Y.H., Ratzkin, H. &Ressler, C. 1963 Biosynthesis of asparagine from β-cyano-l-alamine inNeurospora crassa, and species ofLathyrus andVicia.Federation Proceedings: Federation of American Societies for Experimental Biology 22, 651.Google Scholar
  54. Gmelin, R., Schuler, M. &Bordas, E. 1973 Holocalin ein neues cyanogenes glykosid ausHolocalyx balansae.Phytochemistry 12, 457–461.Google Scholar
  55. Grant, D.J.W. 1973 Degradative versatility ofCorynebacterium pseudodiphteriticum N.C.I.B. 10803 which uses amides as carbon source.Antonie van Leeuwenhoek 39, 273–279.PubMedGoogle Scholar
  56. Hardy, R.W.F., Burns, R.C. &Parshall, G.W. 1971 Bio-inorganic chemistry of dinitrogen fixation. InInorganic Biochemistry, ed. Eichkorn Vol. 2, pp. 746–793 Amsterdam: Elsevier.Google Scholar
  57. Harper, D.B. 1976 Purification and properties of an unusual nitrilase fromNorcadia N.C.I.B. 11216.Biochemical Society Transactions 4, 502–504.PubMedGoogle Scholar
  58. Harper, D.B. 1977a Microbial metabolism of aromatic nitriles.Biochemical Journal 165, 309–319.PubMedGoogle Scholar
  59. Harper, D.B. 1977b Fungal degradation of aromatic nitriles.Biochemical Journal 167, 685–692.PubMedGoogle Scholar
  60. Harris, R.E., Bunch, A.W. &Knowles, C.J. 1987 Microbial cyanide and nitrile metabolism.Science Progress (Oxford) 71, 293–304.Google Scholar
  61. Harris, R.E. &Knowles, C.J. 1983 The conversion of cyanide to ammonia by extracts of a strain ofPseudomonas fluorescens that utilizes cyanide as a source of nitrogen for growth.FEMS Microbiology Letters 20, 337–341.Google Scholar
  62. Hegnauer, R. 1973 Die cyanogenen Verbindungen der Liliatae und Magnoliatae-Magnoliidae: zur systematischen bedeutung des Merkmals der Cyanogenese.Biochemical Systematics 1, 191–197.Google Scholar
  63. Hegnauer, R. 1977 Cyanogenic compounds as systematic markers inTracheophyta.Plant Systematics Evolution Suppl.1, 191–209.Google Scholar
  64. Henbest, H.B., Jones, E.R.H., Smith, G.F. 1953 Isolation of a new plant growth hormone, 3-indoylacetonitrile.Journal of the Chemical Society 75, 3796–3801.Google Scholar
  65. Hofmann, A.W. 1874 Uber das aetherische Oel vonTropäolum majus.Berichte 7, 518–519.Google Scholar
  66. Hook, R.H. &Robinson, W.G. 1964 Ricinine nitrilase—II. Purification and properties.Journal of Biological Chemistry 239, 4263–4267.PubMedGoogle Scholar
  67. Hubel, W. &Nahrstedt, A. 1979 Cardiospermin sulfate. A sulfur-containing cyanogenic glycoside fromCardiospermum grandiflorum.Tetrahedron Letters 45, 4395–4396.Google Scholar
  68. Hubel, W., Nahrstedt, A., Fikenscher, L.H. &Hegbauer, R. 1982 Zierinxyloside a new cyanogenic glycoside fromXeranthemum cylindraceum.Planta Medica 44, 4395–4396.Google Scholar
  69. Hubel, W., Nahrstedt, A., Fikenscher, L.H. &Hegbauer, R. 1982 Zierinxyloside a new cyanogenic glycoside fromXeranthemum cylindraceum.Planta Medica 44, 178–180.Google Scholar
  70. Jackson, R.C. &Handschumacher, R.E. 1970Escherichia coli L-asparaginase. Catalytic activity and subunit nature.Biochemistry 9, 3585–3590.PubMedGoogle Scholar
  71. Jallegeas, J.C., Arnaud, A. &Galzy, P. 1980 Bioconversions of nitriles and their applications.Advances in Biochemical Engineering 14, 1–31.Google Scholar
  72. Jaroszewski, J.W., Anderson, J.J. &Billeskov, I. 1987 Natural cyclopentenoid cyanohydrin glycosides—4. Plants as a source of Chiral.Tetrahedron 43, 2349–2354.Google Scholar
  73. Jaroszewski, J.W. &Olafsdottir E.S. 1987 Monohydroxylated cyclopentenone cyanohydrin glucosides of Flacourtiaceae.Phytochemistry 26, 3348–3349.Google Scholar
  74. Jones, D.A. 1979 Chemical defense: primary or secondary functions?The American Naturalist 113, 445–451.Google Scholar
  75. Jones, E.R.H., Henbest, H.B., Smith, G.F. &Bentley, J.A. 1952 3-Indolylacetonitrile: a naturally occurring plant growth hormone.Nature 169, 485–487.PubMedGoogle Scholar
  76. Kikuchi, K. 1955 Antibiotics fromStreptomyces sp. no. E-212. Studies on Streptomyces antibiotics—XXIV.Journal of Antibiotics (Tokyo) Series A 8, 145–147.Google Scholar
  77. Knowles, C.J. &Bunch, A.W. 1986 Microbial cyanide metabolism.Advances in Microbial Physiology 27, 73–111.PubMedGoogle Scholar
  78. Kofod, H. &Eyjolfson, R. 1966 The isolation of the cyanogenic glucoside prunasin fromPteridium aquilinum (L.) Kuhn.Tetrahedron Letters 12, 1289–1290.Google Scholar
  79. Kofod, H. &Eyjolfson, R. 1969 Cyanogenesis in species of the fern generaCystopteris andDavallia.Phytochemistry 8, 1509–1511.Google Scholar
  80. Koj, A., Michalik, M. &Krasperczyk, H. 1977 Mitochondrial and cytosolic activities of three sulfur transferase in some rat tissues and Morris hepatomas.Bulletin de l' Académie Polonaise des Sciences, Série des Sciences Biologiques 25, 1–6.Google Scholar
  81. Kojima, M., Poulton, J.E., Thayer, S.S. &Conn, E.E. 1979 Tissue distribution of dhurrin and of enzymes involved in its metabolism in leaves ofSorghom bicolor.Plant Physiology 63, 1022–1028.Google Scholar
  82. Kutacek, V. &Kefeli, V.I. 1968 The present knowledge of indole compounds in plants of the Brassicaceae family. InBiochemistry and Physiology of Plant Growth Substances, eds Wigtman, F. & Setterfield, G., pp. 127–152. Ottawa: The Ring Press.Google Scholar
  83. Lang, K. 1933 Die Rhodanbildung in Tierkörpier.Biochemische Zeitschrift 259, 243–256.Google Scholar
  84. Lebeau, J.B., Cormack, M.W. &Mofatt, J.E. 1959 Measuring pathogenesis by the amount of toxic substances produced in alfalfa by a snow mold fungus.Phytopathology 49, 303–305.Google Scholar
  85. Li, J., Burgess, B.K. &Corbin, J.L. 1982 Nitrogenase reactivity: cyanide as a substrate and inhibitor.Biochemistry 21, 4393–4402.PubMedGoogle Scholar
  86. Mahadevan, S. &Thimann, K.V. 1964 Nitrilase—II. Substrate specificity and possible mode of action.Archives of Biochemistry and Biophysics 107, 62–68.PubMedGoogle Scholar
  87. Mao, C.H., Blocher, J.P., Anderson, L. &Smith, A.C. 1965, Cyanogenesis inSorghom vulgare—I. An improved method for the isolation of dhurrin; physical properties of dhurrin.Phytochemistry 4, 297–303.Google Scholar
  88. Marion, L. 1950 The ricinus alkaloid-Ricinine. InThe Alcaloids: Chemistry and Physiology, Vol. 1, pp. 206–209. New York: Academic Press.Google Scholar
  89. Maslin, B.R., Conn, E.E. &Dunn, J.E. 1985 Cyanogenesis inAcacia pachyphloia.Phytochemistry 24, 961–963.Google Scholar
  90. Matthews, C.D., Nagasawa, T., Kobayashi, M. &Yamada, H. 1988 Nitrilase catalysed production of nicotinic acid from 3-cyanopyridine inRhodococcus rhodocrous J1.Applied and Environmental Microbiology 54, 1030–1032.Google Scholar
  91. Mentzer, C. &Favre-Bonvin, J. 1962 Sur la biogénèse du glucoside cyanogénétique des feuilles de laurier-cerise(Prunus lauro-cerasus).Comptes Rendus de l'Académie des Sciences 253, 1072–1074.Google Scholar
  92. Michaels, R. &Corpe, W.A. 1965 Cyanide formation byChromobacterium violaceum.Journal of Bacteriology 89, 106–112.PubMedGoogle Scholar
  93. Michaels, R., Hankes, L.V. &Corpe, W.A. 1965 Cyanide formation from glycine by non-proliferating cells ofChromobacterium violaceum.Archives of Biochemistry and Biophysics 111, 121–125.PubMedGoogle Scholar
  94. Mikolajczak, K.L. 1977 Cyanolipids.Progress in the Chemistry of Fats and Other Lipids 15, 97–130.PubMedGoogle Scholar
  95. Miller, J.M. &Gray, D.O. 1982 The utilization of nitriles and amides by aRbodococcus species.Journal of General Microbiology 128, 1803–1809.Google Scholar
  96. Mimura, A., Kawano, T. &Yamada, K. 1969 Applications of microorganisms to petrochemical industry—I. Assimilation of nitrile compounds by organisms.Journal of Fermentation Technology 47, 631–638.Google Scholar
  97. Mukherjee, R. & Chatterjee, A. 1964 Structure of nudiflorine, a naturally occurring isomer of ricinidine.Chemistry and Industry, 1524–1525.Google Scholar
  98. Mukherjee, R. &Chatterjee, A. 1966 Structure and synthesis of nudiflorine, a new pyridone alkaloid.Tetrabedron 22, 1461–1466.Google Scholar
  99. Mustafa, J., Gupta, A., Agarwal, R. &Osman, S.M. 1986, Cupiana anacardioides: a rich source of cyanolipids.Journal of the American Oil Chemistry Society 63, 671–672.Google Scholar
  100. Nagasawa, T., Kobayashi, M. &Yamada, H. 1988 Optimum culture conditions for the production of benzonitrilase byRhodococcus rbodocrous J1.Archives of Microbiology 150, 89–94.Google Scholar
  101. Nahrstedt, A. 1976 A new cyanogenic glycoside fromSorbaria arborea (Rosaceae).Zeitschrift für Naturforschung 31, 397–400.Google Scholar
  102. Nahrstedt, A. 1985 Cyanogenic compounds as protecting agents for organisms.Plant Systematics and Evolution 150, 35–47.Google Scholar
  103. Nahrstedt, A. &Davis, R.H. 1983 Occurrence, variation and biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in species of theHeliconiini (Insecta: Lepidoptera).Comparative Biochemistry and Physiology 75B, 65–73.Google Scholar
  104. Nahrstedt, A., Hubel, W., Wray, N., Fickenscher, L.H. &Hegnauer, R. 1982b Neue cyanglykoside aus Compositen.Planta Medica 45, 142.Google Scholar
  105. Nahrstedt, A., Kant, J.D. &Wray, V. 1982c Acallyphin, a new cyanogenic glucoside fromAcalypha indica.Phytochemistry 21, 101–105.Google Scholar
  106. Nahrstedt, A., Walther, A. &Wray, V. 1982a Sarmentosin epoxyde: a new cyanogenic compound fromSedum cepaea.Phytochemistry 21, 107–110.Google Scholar
  107. Nartey, F. 1981 Cyanogenesis in tropical feeds and foodstuffs. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F., pp. 115–132. London: Academic Press.Google Scholar
  108. Nishizawa, M., Adachi, K., Sastrapradja, S. &Hayashi, Y. 1983 Isolation of individual type II cyanolipids fromNephelium lappacium.Phytochemistry 22, 2853–2855.Google Scholar
  109. Nitsch, J.P., Nitsch, C. &Wetmore, R.H. 1955 Native growth substances in various plant tissues as separated by paper chromatography.Proceedings of the Plant Physiology Meetings 30, 55.Google Scholar
  110. Nitto Chemical Industry Co. Ltd. 1979 Procédé de préparation de l'acrylamide et du méthacrylamide à l'aide de microorganismes. French Patent, no. 79 079 35.Google Scholar
  111. Pallares, E.S. 1946 Note on the poison produced byPolydesmus (Fontaria) vicinus.Archives of Biochemistry and Biophysics 9, 105–108.Google Scholar
  112. Pistorius, E.K. &Voss, H. 1977 AD-amino acid oxidase fromChorella vulgaris.Biochemica et Biophysica Acta 481, 395–406.Google Scholar
  113. Ressler, C., Abe, O., Kondo, Y., Cottrell, B. &Abe, K. 1973 Purification and characterization fromChromobacterium violaceum of an enzyme catalyzing the synthesis of γ-cyano α-aminobutyric acid and thiocyanate.Biochemistry 12, 5369–5377.PubMedGoogle Scholar
  114. Robinson, W.C. &Hook, R.H. 1974 Ricinine nitrilase—I. Reaction product and substrate specificity.Journal of Biological Chemistry 239, 4257–4262.Google Scholar
  115. Robiquet, F. &Boutron-charlard, A.F. 1830 Nouvelles expériences sur les amandes amères et sur l'huile volatile qu'elles fournissent.Annales de Chimie et Physique 44, 352–382.Google Scholar
  116. Rollinson, G., Meadows, M.P., Harris, R.E. &Knowles, C.J. 1987 The growth of a cyanide utilising strain ofPseudomonas fluorescens in a liquid culture on nickel cyanide as a source of nitrogen.FEMS Microbiology Letters 40, 199–205.Google Scholar
  117. Russel, G.B. &Reay, R.F. 1971 The structures of tetraphyllin A and B two new cyanoglucosides. FromTetrapathazea tetranda.Phytochemistry 10, 1373–1377.Google Scholar
  118. Sakai, T., Yanase, H., Sawada, M. &Tonomura, K. 1981 Formation of β-cyanoalanine by a cyanide-resistant strain:Enterobacter sp. 101.Agricultural and Biological Chemistry 45, 2053–2062.Google Scholar
  119. Saunders, J.A., Conn, E.E., Holin, C. &Stocking, C.R. 1977 Subcellular localization of the cyanogenic glycoside ofSorghom by autoradiography.Plant Physiology 59, 647–652.Google Scholar
  120. Saupe, S.G. 1981 Cyanogenic compounds and angiosperm phylogeny. InPhytochemistry and Angiosperm Phylogeny, eds. Young, D.A. & Seigler, D.S. pp. 80–116. New York: Praeger.Google Scholar
  121. Schilling, E.D. &Strong, F.M. 1954 Isolation structure and synthesis ofLathyrus factor fromL. odoratus.Journal of the American Chemical Society 76, 2848.Google Scholar
  122. Schilling, E.D. &Strong, F.M. 1955 Isolation, structure and synthesis ofLathyrus factor fromL. odoratus.Journal of the American Chemical Society 77, 2843–2445.Google Scholar
  123. Secor, J.B., Conn, E.E., Dunn, J.E. &Seigler, D.S. 1976 Detection and identification of cyanogenic glucosides in six species ofAcacia.Phytochemistry 15, 1703–1706.Google Scholar
  124. Selly, M.K. &Conn, E.E. 1971 Hydroxynitriles lyase (Sorghum vulgare). InMethods in Enzymology, Vol. XVII, Part B, ed. Tabor, N.I.H., pp. 239–244. New York: Academic Press.Google Scholar
  125. Seigler, D.S. 1975 Isolation and characterization of naturally occurring cyanogenic compounds.Phytochemistry 14, 9–29.Google Scholar
  126. Seigler, D.S. 1981 Cyanogenic glycosides and lipids: structural types and distribution. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F., pp. 133–143. London: Academic Press.Google Scholar
  127. Selgler, D.S., Butterfield, C.S., Dunn, J.E. &Conn, E.E. 1975 Dihydroacacipetalin—a new cyanogenic glucoside fromAcacia sieberiana var.woodii.Phytochemistry 14, 1419–1420.Google Scholar
  128. Seigler, D.S., Dunn, J.E., Conn, E.E. &Pereira, J.F. 1983 Cyanogenic glycosides from four Latin American species ofAcacia.Biochemical Systematics and Ecology 11, 15–16.Google Scholar
  129. Seigler, D.S., Eggerding, C. &Butterfield, C. 1974 A new cyanogenic glucoside fromCardiospermum hirsutum.Physochemistry 13, 2330–2332.Google Scholar
  130. Seigler, D.S., Spencer, K.C., Statler, W.S., Conn, E.E. &Dunn, J.E. 1982 Tetraphyllin B and epitetraphyllin B sulphates: novel cyanogenic glucosides fromPassiflora caerulea andP. Alatocaerulea.Phytochemistry 21, 2277–2285.Google Scholar
  131. Smith, A.E. &Cullimore, D.R. 1974 Thein vitro degradation of the herbicide bromoxynil.Canadian Journal of Microbiology 20, 773–776.PubMedGoogle Scholar
  132. Smith, C.R. Jr, Weisleder, D., Miller, R.W., Palmer, I.S. &Olson, O.O.E. 1980 Linustatin and neolinustatin cyanogenic glycosides of linseed meal that protect animal against selenium toxicity.Journal of Organic Chemistry 45, 507–510.Google Scholar
  133. Solomonson, L.P. 1978 Algal reduction of nitrate. InMicrobiology-1978, ed. Schlessinger, D., pp. 315–319. Washington: American Society for Microbiology.Google Scholar
  134. Spencer, K.C. 1984 Cyclopentenoid cyanogens: their chemistry, in plant systematics, and their role in the coevolution of plants and insects Ph.D. Thesis, Univrsity of Illinois, Urbana.Google Scholar
  135. Spencer, K.C. &Seigler, D.S. 1983 Cyanogenesis ofPassiflora edulis.Journal of Agricultural and Food Chemistry 31, 794–796.PubMedGoogle Scholar
  136. Stam, H., Stouthamer, A.H. &Van Verseveld, H.W. 1985 Cyanide assimilation in Rhizobium ORS 571: Influence of the nitrogenase catalyzed hydrogen production on the efficiency of growth.Archives of Microbiology 143, 196–202.Google Scholar
  137. Stevens, D.L. &Strobel, G.A. 1968 Origin of cyanide in cultures of a psychrophilic basidiomycete.Journal of Bacteriology 95, 1094–1102.PubMedGoogle Scholar
  138. Strobel, G.A. 1964 Hydrocyanic acid assimilation by a psychrophilic basidiomycete.Canadian Journal of Biochemistry 42, 1637–1639.Google Scholar
  139. Strobel, G.A. 1966 The fixation of hydrocyanic acid by a psychrophilic basidiomycete.Journal of Biological Chemistry 241, 2618–1621.PubMedGoogle Scholar
  140. Strobel, G.A. 1967 4-Amino-4-cyanobutyric acid as an intermediate in glutamate biosynthesis.Journal of Biological Chemistry 242, 3265–3269.PubMedGoogle Scholar
  141. Sykes, A.H. 1981 Early studies on the toxicology of cyanide. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F. pp. 1–10. London: Academic Press.Google Scholar
  142. Tapper, B.A. &MacDonald, M.A. 1974 Cyanogenic compounds in culture of a psychrophylic basidiomycete (snow mold).Canadian Journal of Microbiology 20, 563–566.PubMedGoogle Scholar
  143. Taylor, H.F. &Wain, R.L. 1959 α-Oxidation of indole acetonitrile.Nature 184, 1142.Google Scholar
  144. Thimann, K.V. &Mahadevan, S. 1958 Enzymatic hydrolysis of indoleacetonitrile.Nature 181, 1466–1467.PubMedGoogle Scholar
  145. Thimann, K.V. &Mahadevan, S. 1963 Nitrilase—I. Occurence, preparation and general properties of the enzyme.Archives of Biochemistry and Biophysics 105, 133–141.Google Scholar
  146. Towers, G.H.N., MacInnes, A.G. &Neish, A.C. 1964 The absolute configurations of the phenolic cyanogenetic glucosides taxiphyllin and dhurrin.Tetrahedron 20, 71–77.Google Scholar
  147. Tschiersch, B. 1966 Toxische Aminosäuren.Pharmazie 21, 445–457.PubMedGoogle Scholar
  148. Uematsu, T. &Suhadolnik, 1974In vivo and enzymatic conversion of Toyoramycin to sangivamycin byStreptomyces rimosus.Archives of Biochemistry and Biophysic 162, 614–626.Google Scholar
  149. van der Wal, B., Sipma, G., Kettenes, O.K. &Semper, A.T.H.J. 1968 Some new constituents of roasted cocoa.Recuil des Travaux Chimiques des Pays-Bas 87, 238–240.Google Scholar
  150. van Rompuy, L., Lambein, F., De Gussen, R. &Van Parijs, R. 1974, The isolation and structure analysis of 2-(2-cyanoethyl)-3-isoxazolin-5-one, 2-(β-D-glucopyranosyl)-3-isoxazolin-5-one and 2-carboxymethyl-3-isoxazolin-5-one fromLathyrus odoratus.Biochemical and Biophysical Research Communications 56, 199–205.PubMedGoogle Scholar
  151. Venesland, B., Pistorius, E.K. &Gewitz, H.S. 1981 HCN production by microalgae. InCyanide in Biology, eds Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F., pp. 349–361. London: Academic Press.Google Scholar
  152. von Denffer, D., Behrens, M. &Fischer, A. 1952 Papierchromatographischer und papierelektrophoretischer Nachweis des β-Indolacetonitrils und des β-Indolaldehyds in Extrakten aus Kohlpflanzen.Naturwissenschaften 39, 550–551.Google Scholar
  153. Ward, E.W.B. &Thorn, G.D. 1965 Evidence for the formation of HCN from glycine by a snow mold fungus.Canadian Journal of Botany 4, 95–104.Google Scholar
  154. Ward, E.W.B., Thorn, G.D. &Staratt, A.N. 1971 Amino acid source of a hydrogen cyanide in cultures of psychrophilic basidiomycete.Canadian Journal of Microbiology 17, 1061–1066.PubMedGoogle Scholar
  155. Watanabe, I., Satoh, Y. &Enomoto, K. 1987 Sereening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity.Agricultural and Biological Chemistry 51, 3193–3199.Google Scholar
  156. Weigiang, S., Dengxi, W. &Guanglin, Y. 1988 Metabolism of propionitrile byPseudomonas putida Jp1 and induced formation of nitrile hydratase. InAbstract book of the 8th International Biotechnology Symposium. Paris, ed Société Française de Microbiologie (SFP), p. 316. Paris: SFP.Google Scholar
  157. Wells, W.W., Yang, M.G., Bolzer, W. &Mickelsen, O. 1968, Gas-liquidchromatographic analysis of cycaxin in cycad flour.Analytical Biochemistry 25, 325–329.PubMedGoogle Scholar
  158. Westley, J. 1981 Cyanide and sulfane sulfur. In:Cyanide in Biology, eds. Venesland, B., Conn, E.E., Knowles, C.J., Westley, J. & Wissing, F., pp. 61–76. London: Academic Press.Google Scholar
  159. Wissing, F. 1974 Cyanide formation from oxidation of glycine by aPseudomonas species.Journal of Bacteriology 117, 1289–1294.PubMedGoogle Scholar
  160. Wray, V., Davis, R.H. &Nahrstedt, A. 1983 Biosynthesis of cyanogenic glycosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin byZygaena andHeliconius species.Zeitschrift für Naturforschung 38C, 583–588.Google Scholar
  161. Wu, J., Fairchild, E.D., Beal, J.L., Tomimatsu, T. &Dokoth, R.W. 1979 Lithospermoside and dasycarponin: cyanoglucosides fromThalictrum.Journal of Natural Products 42, 500–511.Google Scholar
  162. Yamada, H., Asano, Y., Hino, T. &Tani, Y. 1979 Microbial utilization of acrylonitrile.Journal of Fermentation Technology 57, 8–14.Google Scholar
  163. Yamada, H., Asano, Y. &Tani, Y. 1980 Microbial utilization of glutaronitrile.Journal of Fermentation Technology 58, 495–500.Google Scholar
  164. Yanase, H., Sakai, T. &Tonomura, K. 1982a Purification and crystallization of a β-cyanoalanine forming enzyme fromEnterobacter sp. 10-1.Agricultural and Biological Chemistry 46, 355–361.Google Scholar
  165. Yanase, H., Sakai, T. &Tonomura, K. 1982b Some properties of a β-cyanoalanine forming enzyme ofEnterobacter sp. 10-1.Agricultural and Biological Chemistry 46, 363–369.Google Scholar
  166. Yanase, H., Sakai, T. &Tonomura, K. 1983 Purification, crystallization and properties of β-cyanoalanine degrading enzyme inPseudomonas sp. 13.Agricultural and Biological Chemistry 47, 473–482.Google Scholar

Copyright information

© Rapid Communications of Oxford Ltd. 1990

Authors and Affiliations

  • J. L. Legras
    • 1
  • G. Chuzel
    • 2
  • A. Arnaud
    • 1
  • P. Galzy
    • 1
  1. 1.ENSA-INRAMontpellier CedexFrance
  2. 2.CEEMAT-CIRADMontpellier CedexFrance

Personalised recommendations